Этот протокол описывает метод препарировать, экспериментально манипулировать и культура целых сетчатки эксплантов из куриных эмбрионах. Эксплантата культуры полезны, когда высокий уровень успеха, эффективность и воспроизводимость необходимы, чтобы проверить эффекты плазмид для электропорации и / или реагентов веществ, т.е., ферментативных ингибиторов.
Сетчатка является хорошей моделью для развития центральной нервной системы. Большой размер глаза и, самое главное доступность для экспериментальных манипуляций в яйце / в естественных условиях составляет куриный эмбриональный сетчатки универсальным и очень эффективным экспериментальной модели. Несмотря на то, сетчатке цыпленка легко цели в яйце по внутриглазных инъекций или электропорации, эффективное и точное концентрация реагентов в сетчатке может быть трудно полностью контролировать. Это может быть из-за вариаций точного места инъекции, утечки из глаза или неровной диффузии веществ. Кроме того, частота пороков развития и смертности после инвазивных манипуляций, таких как электропорация достаточно высока.
Этот протокол описывает экс ово техники для культивирования целые эксплантатов сетчатки из куриных эмбрионах и обеспечивает способ контролированной экспозиции сетчатки к реагентам. Протокол описывает, как препарировать, экспериментально манипулировать, и культура целых сетчатки эксплантов из куриных эмбрионах. Эксплантаты можно культивировать в течение примерно 24 ч и подвергают различным манипуляций, таких как электропорация. Основные преимущества в том, что эксперимент не зависит от выживания эмбриона и что концентрация вводимого реагента в можно варьировать и контролировать, чтобы определить и оптимизировать эффективную концентрацию. Кроме того, метод является быстрым, дешевым и вместе с его высокой скоростью успеха экспериментальной, она обеспечивает воспроизводимость Результаты. Следует особо подчеркнуть, что он служит в качестве отличным дополнением к экспериментов, проведенных в яйце.
Сетчатка является частью центральной нервной системы, и это, с его относительной простотой и хорошо характеризуется сотовой архитектуры, популярной модели для изучения развития центральной нервной системы. Глаз эмбриона курицы является относительно большим по сравнению с остальной частью эмбриона. Поэтому легко доступны в яйце для экспериментальных манипуляций, таких как инъекции или электропорации, и служит отличным инструментом для получения знаний о клетке сетчатки и биологии развития в естественных условиях. Несмотря на эти основные преимущества, выживание эмбрионов может быть низким, когда эксперименты являются инвазивными, такие как с electroporations, повторных инъекций, или в сочетании экспериментальных манипуляций.
Электропорация плазмид ДНК в курином эмбрионе в яйце является важным и хорошо создана методика 1. Это позволяет для маркировки нейронов, отслеживание судьбы клеток, а также нервных путей в центральной NERVПодразделения системы, и это позволяет внематочной экспрессии генов для анализа функции белка в естественных условиях. Методика была использована для изучения нервной трубки 2, 3 заднего мозга, и сетчатки 4. Электропорация эмбрионального сетчатки в яйце есть некоторые экспериментальные трудности, связанные с в естественных условиях ситуации. Положение глаз, из-за черепно-мозговой складывания эмбриона, находится относительно близко к сердцу. Эта близость повышает риск сердечного приступа следующий электропорации, и риск увеличивается с возрастом эмбрионов. Кроме того, для доступа к глаз, необходимо открыть эмбриональных мембран, тем самым увеличивая риск кровотечения, пороков развития и последующего снижения жизнеспособности. При тестировании и оптимизации новой плазмиды ДНК часто без известной фенотипической исхода, эти ограничения могут снизить эффективность и силу метода даже для опытного экспериментатора. Как представлено в настоящем протоколе, культуры шдыры сетчатки эксплантов, определяется как весь нервной сетчатки с пигментным эпителием удаляется, является эффективным методом, который дополняет в ово подхода.
Интраокулярные инъекции химических реагентов относительно легко выполнить в яйце. Тем не менее, эффективное и точное содержание вводимых реагентов в нейронном сетчатки может быть трудно полностью контролировать. Вводимый объем может изменяться из-за утечки и точное место инъекции может повлиять как на распределение реагента в глаза и распространение через стекловидное тело. Изменчивость будет иметь серьезные последствия для интерпретации результатов при т.е. кривая доза-ответ для ингибитора фермента определяется; в частности, если эффект мал и временного окна эффекта является узким. Кроме того, только один глаз может быть использовано от каждого эмбриона при выполнении экспериментов в ово-за возможных системных эффектов через кровьна противоположной глаза. Возраст соответствия важно при изучении развития и индивидуальную изменчивость между лечение и контрольных эмбрионов может привести к дополнительной экспериментальной изменчивости.
По этим причинам, экс ово методом, основанным на эксплантатов сетчатки от куриных эмбрионах был разработан, в которой нейронные сетчатки могут быть подвержены равномерной и контролируемых экспериментальных условий в пробирке. Настоящий Протокол был разработан на основе предыдущих протоколов 5-9. Эксплантатов сетчатки от стадии (й) 20 (эмбриональные дней [E] 3) ST31 (Е7) куриных эмбрионов иссекали, культивируют и электропорации с определенной концентрации плазмидной ДНК или подвергается среде, содержащей определенное концентрации химического реагента. Протокол, представленные здесь была успешно реализована в последних публикациях, используя несколько различных химических реагентов, в том числе регуляторов повреждения ДНК пути, такие, как KU55933, SB 218078 и 109555 Дито НСКsylate и клеточный цикл, таких как Cdk1 / 2 ингибитора III 10,11.
В этой работе подробно протокол для вскрытия, электропорации или химической обработки, и культивирования целых сетчатки эксплантов из куриных эмбрионах представлена. Этот протокол является простым, быстрым и позволяет как для высокой скорости успеха и воспроизводимость Ре…
The authors have nothing to disclose.
The work was supported by Barncancerfonden (PR2013-0104), Swedish Research Council (12187-18-3), ögonfonden, Kronprinsessan Margaretas arbetsnämnd för synskadade, Synfrämjandets forskningsfond and St Eriks ögonsjukhus forskningsstipendier.
1xPBS (tablet) | Life technologies | 18912-014 | |
10xDPBS | Life technologies | 14080-048 | |
100 mm Petri dish | VWR | 734-0006 | |
100 μL pipette tips | VWR | 613-0798 | |
1.5 mL disposable plastic cuvette | Thomas Scientific | 8495V01 | |
24-well plate | Sigma Aldrich | D7039 | |
35 mm Petri dish | VWR | 391-1998 | |
70% ethanol | Solveco | 1054 | |
Cdk1/2 inhibitor III | 217714 | Calbiochem | 300nM in 0.01% DMSO |
Cell culture incubator | Thermo Forma | ||
Dissecting microscope | Leica | ||
DMEM | Life Technologies | 41966-029 | |
Electrodes | Platina, custom made | ||
Electro square porator ECM 830 | Harvard Apparatus | ||
F12 Nutrient mix | Life Technologies | 31331-028 | |
FBS | Life Technologies | 16140-071 | |
Forceps | AgnThos | 0108-5-PS | |
Freezing medium NEG50 | Cellab, Sweden | 6502 | |
GFP expressing DNA plasmid (pZGs) | |||
Humidified incubator | Grumbach Brutgeraete GmbH, Asslar, Germany | 8204 | |
Insulin | Sigma Aldrich | I9278-5ML | |
L-glutamine | Life Technologies | 25030024 | |
Mounting medium ProLong Gold with DAPI | Life Technologies | P36935 | |
Paraffin film | VWR | 291-1214P | |
Paraformaldehyde | Sigma Aldrich | 16005-1KG-R | |
Peel-A-Way embedding mold | Sigma Aldrich | E6032 | |
Penicillin streptomycin | Life Technologies | 15140-122 | |
PhosphoHistone 3 (PH3) | Millipore | 06-570 | Dilution 1/4000 |
Platinum electrodes (custom made from "rondelles") | Sargenta | 390-R (rondeller) | Dia: 4mm, 0.1 mm thickness |
Platimun electrodes | Sonidel | CUY700P4L | Dia: 4 mm |
Polyethylene pasteur pipette | VWR | 612-2853 | |
Rotator shaker | VWR | 444-2900 | |
Small spoon | VWR | 231-2151 | |
Sucrose | VWR | 443815S | |
White Leghorn eggs | Local supplier | ||
Wine cooler | WineMaster 24, Caso, Berlin Germany |