Shuttle-box Vermeidung Lernen wird in Behavioral Neuroscience etablierte. Dieses Protokoll beschreibt, wie Shuttle-Box-Lernen bei Nagetieren mit ortsspezifischen elektrischen intracortical Mikrostimulation (ICMS) und gleichzeitige chronische in vivo-Aufnahmen als Werkzeug, um mehrere Aspekte des Lernens und Wahrnehmung studieren kombiniert werden.
Shuttle-box Vermeidung Lernen ist ein etabliertes Verfahren in der Verhaltensneurowissenschaften und Versuchsaufbauten waren traditionell nach Maß; die notwendige Ausrüstung ist nun durch mehrere Handelsunternehmen zur Verfügung. Dieses Protokoll enthält eine detaillierte Beschreibung eines Zwei-Wege-Shuttle-Box-Vermeidungslernparadigma in Nagetieren (hier Mongolische Rennmäuse; Meriones unguiculatus) in Kombination mit ortsspezifischen elektrischen intrakortikale Mikrostimulation (ICMS) und gleichzeitiger chronisch elektrophysiologische in-vivo-Aufnahmen. Die ausführliche Protokoll ist auf mehrere Aspekte der Lernverhalten und die Wahrnehmung in verschiedenen Nagetierarten zu studieren.
Standortspezifische ICMS auditiver kortikalen Schaltkreisen als konditionierte Stimuli hier als Werkzeug, um die Wahrnehmungs Relevanz von bestimmten afferenten, abführenden und intrakortikale Verbindungen testen. Verschiedene Aktivierungsmuster können durch die Verwendung verschiedener Stimulationselektrode arr hervorgerufen werdenays für die lokale, Schicht abhängige ICMS oder entfernte ICMS Websites. Verwendung Verhaltenssignalerkennungsanalyse festgestellt werden kann, die Stimulationsstrategie ist am wirksamsten zum Hervorrufen einer behaviorally nachweisbar und der Schenkelsignals. Ferner parallelen Mehrkanal-Aufnahmen mit unterschiedlichen Elektrodenkonstruktionen (Oberflächenelektroden, Tiefenelektroden, etc.) zu ermöglichen für die Untersuchung der neuronalen Observablen über den Zeitverlauf eines solchen Lernprozessen. Es wird diskutiert werden, wie sich Änderungen der Verhaltens Design kann die kognitive Komplexität zu erhöhen (zB Erkennung, Diskriminierung, Umkehr Lernen).
Ein grundlegendes Ziel der Behavioral Neuroscience ist es, spezifische Verbindungen zwischen neuronalen strukturellen und funktionellen Eigenschaften, Lernen und Wahrnehmung zu etablieren. Neuronale Aktivität mit der Wahrnehmung und Lernen verbunden sind, können durch elektrophysiologische Ableitung von Aktionspotentialen und lokaler Feldpotentiale in verschiedenen Hirnstrukturen an mehreren Stellen untersucht werden. In der Erwägung, elektrophysiologischen Ableitungen bieten korrelative Zusammenhänge zwischen neuronaler Aktivität und Verhalten, hat direkte elektrische Mikrostimulation intrakortikale (ICMS) seit über einem Jahrhundert war die direkteste Methode zum Testen von kausalen Zusammenhänge von angeregten Populationen von Neuronen und deren Verhaltens- und Wahrnehmungseffekte 1-3. Viele Studien haben gezeigt, dass die Tiere in der Lage, Verwendung von verschiedenen räumlichen und zeitlichen Eigenschaften der elektrischen Impulse in Wahrnehmungsaufgaben in Abhängigkeit von der Stimulationsstelle innerhalb etwa retinotopic 4, t machenonotopic 5 oder somatotopen 6 Regionen in der Hirnrinde. Vermehrung von elektrisch evozierten Aktivität im Cortex wird hauptsächlich durch die Anordnung der axonalen Fasern und deren Verteilung synaptischer Verbindungen 2, die in Kortex ist klar Schicht abhängige 7 bestimmt. Die sich ergebende polysynaptischen Aktivierung durch ICMS evozierte ist von nun an viel weiter verbreitet als die direkten Auswirkungen des elektrischen Feldes 2,8,9. Dies erklärt, warum Schwellen von Wahrnehmungseffekte intrakortikale Mikrostimulation ausgelöst kann stark Schicht abhängige 8,10,11 und ortsabhängige 9 sein. Eine kürzlich durchgeführte Studie zeigte, im Detail, dass die Stimulation der oberen Schichten ergab weiter verbreitet Aktivierung corticocortical Kreisen in erster Linie supragranular Schichten, während die Stimulation der tieferen Schichten der Hirnrinde führen zu einer Brenn, wiederkehrende corticoefferent innerhalb der Säulen-Aktivierung. Parallel Verhaltensexperimente zeigten, dass die letztere viel niedriger Wahrnehmungsdetektions thresholds 8. Daher wurde der Vorteil der ortsspezifischen ICMS so konditionierten Stimuli in Kombination mit elektrophysiologischen Ableitungen genutzt kausal beziehen spezifischen kortikalen Schaltung Aktivierungen 8 zu Verhaltensmaßnahmen von Lern- und Wahrnehmungs im Shuttle-Box.
Das Zwei-Wege-Shuttle-Box-Paradigma ist eine gut etablierte Laborgerät zur Vermeidung Lernen 12 zu studieren. Ein Shuttle-Box besteht aus 2 Kammern, die durch eine Hürde oder Tür getrennt. Ein bedingten Reiz (CS), die durch ein geeignetes Signal wie ein Licht oder Ton dargestellt wird, ist um einen aversiven unbedingten Reiz (US) gefolgt, wie beispielsweise ein Fuß-Schock über einem Metallgitterboden. Themen können lernen, die US vermeiden, indem Shuttling von einer Shuttle-Box-Abteil zum anderen in Antwort auf das CS. Shuttle-Box-Lernen beinhaltet eine Folge von unterscheidbaren Lernphasen 13,14: Erstens,Themen lernen, den US vom CS durch klassische Konditionierung vorherzusagen und aus den USA durch instrumentelle Konditionierung zu entkommen, wie die USA auf pendelt beendet. In einer nächsten Phase, Themen zu lernen, um die US-ganz zu vermeiden durch pendelt in Reaktion auf die CS vor dem US-Angriff (Vermeidung Reaktion). Allgemein beinhaltet Shuttle-box Lern klassische Konditionierung, instrumentelle Konditionierung sowie zielgerichtetes Verhalten, je nach Lernphase 14.
Der Shuttle-Box-Verfahren lässt sich leicht und eingestellt werden, in der Regel führt zu robusten Verhalten nach einigen täglichen Trainingseinheiten 15-17. Neben einfachen Vermeidungsanlage (Detektion) kann der Shuttle-Box weiter verwendet werden, um Impulse Diskriminierung durch den Einsatz von Go / NoGo Paradigmen zu untersuchen. Hier werden die Tiere darauf trainiert, den US durch eine konditionierte Reaktion (CR) (go Verhalten; Shuttle in die entgegengesetzte Raum) zu vermeiden, als Reaktion auf ein <strong> go-Stimulus (CS +) und von Nogo-Verhalten (Aufenthalt in der Kammer; keine CR) in Reaktion auf ein Nogo-Stimulus (CS) Parallel Mikrostimulation und Erfassung der neuronalen Aktivität mit hoher Dichte Multielektroden-Arrays ermöglichen, um zu studieren. die physiologischen Mechanismen erfolgreiches Lernen zugrunde. Einige technische Details, die grundlegend für die erfolgreiche Kombinationen von Shuttle-Box-Training, ICMS und parallel Elektrophysiologie sind, werden diskutiert.
Dieses Protokoll beschreibt ein Verfahren zur gleichzeitigen ortsspezifische ICMS und Mehrkanal-elektrophysiologischen Ableitungen in einem Lern Tier mit Hilfe eines Zwei-Wege-aversiven Fuß-Schock-gesteuerten Shuttle-Box-System. Das Protokoll betont technischen Schlüsselbegriffe für eine solche Kombination und weist darauf hin, wie wichtig die Erdung des Tieres nur über seinen gemeinsamen Masseelektrode, so dass die gridfloor mit variabler Spannung. Hier wurde Gehör Shuttle-box Lernen Mongolische Rennmäuse a…
The authors have nothing to disclose.
Die Arbeit wurde durch Zuschüsse aus dem Deustche Forschungsgemeinschaft DFG und dem Leibniz-Institut für Neurobiologie unterstützt. Wir danken Maria-Marina Zempeltzi und Kathrin Ohl für die technische Unterstützung.
Teflon-insulated stainless steel wire | California Fine Wire | diam. 50µm w/ isolation | |
Pin connector system | Molex Holding GmbH | 510470200 | 1.25 mm pitch PicoBlade |
TEM grid Quantifoil | Science Services | EQ225-N27 | |
Dental acrylic Paladur | Heraeus Kulzer | 64707938 | |
Hand-held drill OmniDrill35 | WPI | 503599 | |
Ketamine 500mg/10ml | Ratiopharm GmbH | 7538837 | |
Rompun 2%, 25ml | Bayer Vital GmbH | 5066.0 | |
Sodium-Chloride 0.9%, 10ml | B.Braun AG | PRID00000772 | |
Lubricant KY-Jelly | Johnson & Johnson | ||
Shuttle-box E10-E15 | Coulbourn Instruments | H10-11M-SC | |
Stimulus generator MCS STG 2000 | Multichannel Systems | ||
Plexon Headstage cable 32V-G20 | Plexon Inc. | HSC/32v-G20 | |
Plexon Headstage 32V-G20 | Plexon Inc. | HST/32v-G20 | |
PBX preamplifier 32 channels | Plexon Inc. | 32PBX box | |
Multichannel Acquisition System | Plexon Inc. | MAP 32/HLK2 | |
Cryostate CM3050 S | Leica Microsystems GmbH | ||
Signal processing Card Ni-Daq | National Instruments | ||
Lab StandardTM Stereotaxic Instruments | Stoelting Co. | ||
Audio attenator g.pah | g.pah Guger technologies | ||
Cresyl violet acetate | Roth GmbH | 7651.2 | |
Roticlear | Roth GmbH | A538.1 | |
Sodium acetate trihydrate | Roth GmbH | 6779.1 | |
Potassium hexacyanoferrat(II) trihydrate | Roth GmbH | 7974.2 | |
Di-sodium hydrogen phospahte dihydrate | Merck | 1,065,801,000 | |
ICM Impedance Conditioning Module | FHC | 55-70-0 | |
Animal Temperarture Controler | World Precision Instruments | ATC2000 |