Summary

A'即插即用'的方法来创建水分散性Nanoassemblies包含两亲聚合物,有机染料和上变频纳米粒子

Published: November 14, 2015
doi:

Summary

Organic dye molecules and oleic acid coated upconverting nanoparticles are not water-soluble. This protocol describes a ‘plug and play’ method that enables the transfer of organic dye molecules and upconverting particles from their initial hydrophobic solvent to water.

Abstract

In this protocol, we first describe a procedure to synthesize lanthanide doped upconverting nanoparticles (UCNPs). We then demonstrate how to generate amphiphilic polymers in situ, and describe a protocol to encapsulate the prepared UCNPs and different organic dye molecules (porphyrins and diarylethenes) using polymer shells to form stable water-dispersible nanoassemblies. The nanoassembly samples containing both the UCNPs and the diarylethene organic dyes have interesting photochemical and photophysical properties. Upon 365 nm UV irradiation, the diarylethene group undergoes a visual color change. When the samples are irradiated with visible light of another specific wavelength, the color fades and the samples return to the initial colorless state. The samples also emit visible light from the UCNPs upon irradiation with 980 nm near-infrared light. The emission intensity of the samples can be tuned through alternate irradiation with UV and visible light. Modulation of fluorescence can be performed for many cycles without observable degradation of the samples. This versatile encapsulation procedure allows for the transfer of hydrophobic molecules and nanoparticles from an organic solvent to an aqueous medium. The polymer helps to maintain a lipid-like microenvironment for the organic molecules to aid in preservation of their photochemical behavior in water. Thus this method is ideal to prepare water-dispersible photoresponsive systems. The use of near-infrared light to activate upconverting nanoparticles allows for lower energy light to be used to activate photoreactions instead of more harmful ultraviolet light.

Introduction

今天,仍然是一个迫切需要开发新型生物成像剂。许多新的荧光探针已经有案可稽1-6然而,在图像分辨率实质性改进仍然是一个挑战。7的一个实际方法是直接调制“光”发射状态和一个“暗”淬火状态之间的荧光探针。 8-12这种特殊方法已被应用到开发的技术,如受激发射损耗(STED)显微镜13和随机光学重构显微术(STORM)14

来调制荧光另一种方法是为耦合光响应性的发色团一起用荧光探针。15,16切换两种异构体,即只有一个异构体可以作为有效的能量转移受体之间的光响应发色团,允许控制从第荧光猝灭通过荧光共振能量转移(FRET)等机制Ë探头。的结果是创建的发射状态,并且可以由光响应发色团,以不同波长的光的曝光交替急冷状态。

光响应二芳基乙烯的发色团可以为无色开环异构体和着色环封闭异构体照射时,用紫外和可见光之间发生可逆切换。17-19的两种异构体的闭环异构体的化妆和可调谐吸收光谱的热稳定性二芳基乙烯非常好的候选者可控的FRET受体20-23的镧系元素掺杂的NaYF 4纳米颗粒上变换是用于生物成像是有用的。24这些纳米颗粒吸收的近红外光并发光,在可见光谱的几个区域。荧光调制通过组合光响应二芳基乙烯的发色团和纳米颗粒的例子已预先viously报告由我们的组25-27然而,在每个实施例中描述的系统需要一个额外的合成修饰的二芳基乙烯附着到纳米颗粒的表面,其中复杂更多样化的系统的开发。

在这里我们展示了一个简单的“即插即玩”的方法准备使用自组装策略水分散性有机染料分子和光响应上变频纳米粒子。聚合物的选择;聚(苯乙烯-马来中高音酐)和聚醚胺2070同时提供疏水性和亲水性的环境。的聚合物帮助疏水部分以保持正常的水不溶性有机分子,并上变频纳米颗粒一起,而该聚合物的亲水区是用于保持水溶解度的关键。首先,我们将展示由热核方法合成上变频纳米粒子。然后,我们将证明豪瓦特的有机分子,并上变频纳米颗粒的聚合物壳的疏水区内包封和保持稳定在水介质中通过简单地共同搅拌该升压变换纳米颗粒,聚合物和不同的有机染料分子的溶液,接着通过一种方便的处理过程。我们还演示了如何调制使用外部光线照射组件的荧光发射。我们预计,采用这种“即插即用”的方法,使水分散性nanoassemblies将继续扩大范围。

Protocol

1.合成了NaYF 4 /镱3+ / ER 3+上变频纳米粒子(UCNP)的设置该装置如下: 将250毫升的加热套定期搅拌板和插套到热电偶。 放置一个250ml圆底烧瓶配备有磁力搅拌棒上的加热罩以适当的夹紧。 附加一个空气适配器到圆底烧瓶的左颈部和该空气适配器连接到的Schlenk线与塑料管。 附加的玻璃适配器到圆底烧瓶的右颈部和固定温度计适配器到玻璃?…

Representative Results

吸收光谱和荧光光谱采集样品DAE-UCNP。吸收光谱被用于封闭二芳基乙烯的发色团和上变频纳米颗粒之间比较光谱重叠。样品(两者TPP-UCNP和DAE-UCNP)的照片也被包括在内以证明有机染料分子和上变频纳米颗粒,其位于水相中的两亲聚合物壳中成功封装。光化学和荧光的调制也显示出由在不同的光源的样品照明。 化学理论“相似相溶”解释了为什么当在氯仿中卟啉或UCNPs的等分试…

Discussion

根据此协议中合成的纳米颗粒具有从20至25纳米的中心在左右22.5纳米。-26,27-它们可以被分类为球形颗粒与α-NaYF 4主晶格结构的尺寸分布。还有在这个协议中的两个关键步骤。在UCNP合成,关键的是要维持加热温度和时间尽可能精确,以保证颗粒尺寸分布窄。同时加入的NaOH和NH 4 F一起在反应没有产生纳米颗粒的良好分布尺寸和良好的形态的开头添加镧系元素离子。加入的NaOH?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Research Chairs Program, and Simon Fraser University. This work made use of 4D LABS shared facilities supported by the Canada Foundation for Innovation (CFI), British Columbia Knowledge Development Fund (BCKDF) and Simon Fraser University.

Materials

yttrium acetate sigma 326046 Yttrium(III) acetate hydrate
ytterbium acetate sigma 544973  Ytterbium(III) acetate hydrate 
erbium acetate sigma 325570 Erbium(III) acetate hydrate
oleic acid sigma 75096 analytical standard
octadecene sigma O806  Technical grade 
NaOH S5881  reagent grade
NH4F 216011 ACS reagent
poly(styrene-alt-maleic anhydride) sigma 4422699 Average Mn= 1700
JeffAmine 2070 Huntsman M-2070
Varian Carry 300 Agilent
JDSU NIR laser JSDU L4-9897510-100M 980 nm diode laser

References

  1. Fery-Forgues, S. Fluorescent organic nanocrystals and non-doped nanoparticles for biological applications. Nanoscale. 5 (18), 8428-8442 (2013).
  2. Vollrath, A., Schubert, S., Schubert, U. S. Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles. J. Mater. Chem. B. 1, 1994-2007 (2013).
  3. Cheng, X., Lowe, S. B., Reecec, P. J., Gooding, J. J. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 43, 2680-2700 (2014).
  4. Luo, P. G., et al. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 4, 10791-10807 (2014).
  5. Wang, Y., Hu, R., Lin, G., Roy, I., Yong, K. -. T. Functionalized Quantum Dots for Biosensing and Bioimaging and Concerns on Toxicity. ACS Appl. Mater. Interfaces. 5 (8), 2786-2799 (2013).
  6. Kairdolf, B. A., et al. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications. Annu. Rev. Anal. Chem. 6 (1), 143-162 (2013).
  7. Huang, B., Bates, M., Zhuang, X. Super-Resolution Fluorescence Microscopy. Annu. Rev. Biochem. 78, 993-1016 (2009).
  8. Fölling, J., et al. Photochromic Rhodamines Provide Nanoscopy with Optical Sectioning. Angew. Chem. Int. Ed. 46 (33), 6266-6270 (2007).
  9. Fölling, J., et al. Fluorescence Nanoscopy with Optical Sectioning by Two-Photon Induced Molecular Switching using Continuous-Wave Lasers. Chem. Phys. Chem. 9 (2), 321-326 (2008).
  10. Bossi, M., et al. Multicolor Far-Field Fluorescence Nanoscopy through Isolated Detection of Distinct Molecular Species. Nano Lett. 8 (8), 2463-2468 (2008).
  11. Berns, M. W., Krasieva, T., Sun, C. &. #. 8. 2. 1. 1. ;. H., Dvornikov, A., Rentzepis, P. M. A polarity dependent fluorescence “switch” in live cells. Photochem. Photobiol. B: Biol. 75, 51-56 (2004).
  12. Zou, Y., et al. Amphiphilic Diarylethene as a Photoswitchable Probe for Imaging Living Cells. J. Am. Chem. Soc. 130 (47), 15750-1 (2008).
  13. Westphal, V., et al. Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement. Science. 320, 246-249 (2008).
  14. Zhuang, X. Fluorescent Switches Based on Photochromic Compounds. Nat Photonics. 3, 365-367 (2009).
  15. Cusido, J., Deniz, E., Raymo, F. M. Fluorescent Switches Based on Photochromic Compounds. Eur. J. Org. Chem. 13, 2031-2045 (2009).
  16. Raymo, F. M., Tomasulo, M. Electron and energy transfer modulation with photochromic switches. Chem. Soc. Rev. 34, 327-336 (2005).
  17. Feringa, B. L. . Molecular Switches. , (2010).
  18. Tian, H., Yang, S. Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev. 33, 85-97 (2004).
  19. Ubaghs, L., Sud, D., Branda, N. R., Perepichka, I. D., Perepichka, D., Branda, N. R. . Handbook in Thiophene-Based Materials: Applications in Organic Electronics and Photonics. 2, (2009).
  20. Norsten, T. B., Branda, N. R. Photoregulation of Fluorescence in a Porphyrinic Dithienylethene Photochrome. J. Am. Chem. Soc. 123 (8), 1784-1785 (2001).
  21. Giordano, L., Jovin, T. M., Irie, M., Jares-Erijman, E. A. Diheteroarylethenes as Thermally Stable Photoswitchable Acceptors in Photochromic Fluorescence Resonance Energy Transfer (pcFRET). J. Am. Chem. Soc. 124 (25), 7481-7489 (2002).
  22. Fölling, J., et al. Synthesis and Characterization of Photoswitchable Fluorescent Silica Nanoparticles. Small. 4 (1), 134-142 (2008).
  23. Jeong, J., et al. Photoreversible cellular imaging using photochrome-conjugated fullerene silica nanoparticles. Chem. Commun. 47, 10668-10670 (2011).
  24. Gai, S., Li, C., Yang, P., Lin, J. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114 (4), 2343-2389 (2014).
  25. Carling, C. -. J., Boyer, J. -. C., Branda, N. R. Multimodal fluorescence modulation using molecular photoswitches and upconverting nanoparticles. Org. Biomol. Chem. 10, 6159-6168 (2012).
  26. Wu, T., Boyer, J. -. C., Barker, M., Wilson, D., Branda, N. R. A “Plug-and-Play” Method to Prepare Water-Soluble Photoresponsive Encapsulated Upconverting Nanoparticles Containing Hydrophobic Molecular Switches. Chem. Mater. 25 (12), (2013).
  27. Wu, T., Kaur, S., Branda, N. R. Energy transfer between amphiphilic porphyrin polymer shells and upconverting nanoparticle cores in water-dispersible nano-assemblies. Org. Biol. Chem. 13, 2317-2322 (2015).
  28. Irie, M. Photochromism: Memories and Switches Introduction. Chem. Rev. 100 (5), 1683-1684 (2000).

Play Video

Cite This Article
Arafeh, K. M., Asadirad, A. M., Li, J. W., Wilson, D., Wu, T., Branda, N. R. A ‘Plug and Play’ Method to Create Water-dispersible Nanoassemblies Containing an Amphiphilic Polymer, Organic Dyes and Upconverting Nanoparticles. J. Vis. Exp. (105), e52987, doi:10.3791/52987 (2015).

View Video