Summary

Vurdering af neuromuskulære funktion Brug Perkutan elektrisk nervestimulation

Published: September 13, 2015
doi:

Summary

We present a protocol to assess changes in neuromuscular function. Percutaneous electrical nerve stimulation is a non-invasive method that evokes muscular responses. Electrophysiological and mechanical properties of these responses permit the evaluation of neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels).

Abstract

Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.

Introduction

Perkutan elektrisk nervestimulation er almindeligt anvendt til at vurdere neuromuskulære funktion 1. Det grundlæggende princip består i at fremkalde en elektrisk stimulus til en perifer motorisk nerve til at fremkalde en muskelsammentrækning. Mekanisk (måling moment) og elektrofysiologiske (elektromyografisk aktivitet) responser samtidigt registreres. Drejningsmoment, indspillet i den betragtede fælles, vurderes ved hjælp af et ergometer. Den elektromyografisk (EMG) signal registreres ved hjælp overfladeelektroder har vist sig at repræsentere aktiviteten af musklen 2. Denne ikke-invasiv metode er ikke smertefuld og mere let implementeres end intramuskulære optagelser. Både monopolære og bipolære elektroder kan anvendes. Den monopolære elektrode konfiguration har vist sig at være mere følsomme over for ændringer i muskelaktivitet 3, der kan være nyttige for små muskler. Bipolære elektroder har imidlertid vist sig at være mere effektiv til at forbedre signal-til-støj ringe 4 og er mest almindeligt anvendt som en metode til registrering og kvantificere motorenhed aktivitet. Den nedenfor beskrevne metode vil fokusere på bipolære optagelser. EMG-aktivitet er en indikator af effektiviteten og integriteten af ​​neuromuskulære system. Anvendelsen af perkutan nervestimulation tilbyder yderligere indsigt i neuromuskulære funktion, dvs. ændringer på muskulære, spinal eller supra-spinale niveau (figur 1).

Figur 1
Figur 1:. Oversigt over neuromuskulære målinger STIM: nervestimulation. EMG: Elektromyografi. VAL: Frivillig Aktivering Level. RMS: Root Mean Square. M max: Maksimal M-bølge amplitude.

I hvile, forbindelsen muskel aktionspotentiale, også kaldet M-bølge, er den korte latenstid respons observeret efter stimulus artefakt, og repræsenterer exciteres muskelmasse ved direkte aktivi ation af motordrevne axoner fører til musklen (figur 2, nummer 3). M-bølge amplitude øges med intensitet, indtil den når et plateau af dens maksimale værdi. Denne reaktion, kaldet M max, repræsenterer den synkrone sammenlægning af alle motoriske enheder og / eller muskel fiber aktionspotentialer registreres under overfladen EMG elektroder 5. Udviklingen i spids-til-spids-amplitude eller bølger område anvendes til at identificere ændringer af neuromuskulær transmission 6. Ændringer i de mekaniske reaktioner forbundet med M-bølge, dvs peak spjæt drejningsmoment / kraft, kan skyldes ændringer i muskel uro og / eller inden for de muskelfibre 7. Sammenslutningen af M max amplitude og peak spjæt drejningsmoment amplitude (Pt / M-forhold) giver et indeks for elektromekanisk effektivitet af musklen 8, dvs. mekanisk respons for en given elektrisk motor kommando.

52.974 / 52974fig2.jpg "/>
Figur 2:. Motor og refleksive veje aktiveres af nervestimulation Elektrisk stimulering af en blandet (motor / sensorisk) nerve (STIM) inducerer en depolarisering af både motor axon og Ia afferente fyring. Depolarisering af la afferenter mod rygmarven aktiverer en alfa motoneuron, hvilket igen fremkalder en H-refleks (pathway 1 + 2 + 3). Afhængig af stimulus intensitet, motor axon depolarisering fremkalder en direkte muskuløs reaktion: M-bølge (pathway 3). Ved maksimal M-bølge intensitet, er en antidrom strøm også genereres (3 ') og kolliderer med refleks flugtning (2). Denne kollision helt eller delvist annullerer H-refleks.

H-refleksen er en elektrofysiologisk reaktion anvendes til at vurdere ændringer i Ia-α motoneuron synapse 9. Denne parameter kan vurderes i hvile eller under frivillige sammentrækninger. H-refleks viser en variant af stræk refleks (figur 2, number 1-3). H-refleks aktiverer motoriske enheder monosynaptically rekrutteres af Ia afferente veje 10,11, og kan blive udsat for perifere og centrale påvirkninger 12. Fremgangsmåden til at fremkalde en H-refleks vides at have en høj intraindividuelle pålidelighed at vurdere spinal ophidselse i hvile 13,14 og under isometriske kontraktioner 15.

Under en frivillig kontraktion, kan størrelsen af ​​den frivillige neurale drev vurderes på grundlag af amplituden af ​​signalet EMG, generelt kvantificeret under anvendelse kvadratrodsafvigelsen (RMS). RMS EMG er almindeligt anvendt et middel til at kvantificere niveauet for excitation af det motoriske system under frivillig kontraktion (figur 1). På grund af den intra- og interindividuel variation 16, RMS EMG skal normaliseres ved hjælp af EMG konstateret i en muskel-specifik maksimal frivillig kontraktion (RMS EMGmax). Hertil kommer, fordi ændringer i EMG-signalet kan be grund af ændringer på perifert niveau, normalisering ved hjælp af en perifer parameter såsom M-bølge er nødvendig for at vurdere kun den centrale del af EMG-signalet. Dette kan gøres ved at dividere RMS EMG med den maksimale amplitude eller RMS Mmax af M-bølgen. Normalisering hjælp RMS Mmax (dvs. RMS EMG / RMS Mmax) er den foretrukne metode, da det tager hensyn til den mulige ændring af M-bølge varighed 17.

Motor-kommandoer kan også vurderes ved at beregne den frivillige aktivering niveau (VAL). Denne metode bruger twitch interpolation teknik 18 ved at overlejre en elektrisk stimulation på M max intensitet under en maksimal frivillig sammentrækning. Den ekstra drejningsmoment induceret ved at stimulere nerven er sammenlignet med en kontrol spjæt produceret af identiske nervestimulation i en afslappet potenseret muscle 19. For at vurdere maksimal VAL, den oprindelige twitch interponing teknikken beskrevet af Merton 18 involverer en enkelt stimulus interpoleret over en frivillig kontraktion. For nylig er anvendelsen af parrede stimulation blevet mere populære, fordi de intervaller fremkaldte drejningsmoment er større, lettere at bestemme, og mindre variabel i forhold til enkelte stimulation svar 20. VAL giver et indeks af kapaciteten af det centrale nervesystem til maksimalt aktivere de arbejdende muskler 21. I øjeblikket VAL evalueret ved brug af twitch interpolation teknik er den mest værdifulde metode til vurdering af niveauet af muskel aktivering 22. Desuden maksimale drejningsmoment vurderet ved hjælp af en ergometer er den mest korrekt studerede styrke test parameter gælder for brug i forskning og kliniske indstillinger 23.

Elektrisk nervestimulation kan anvendes i en række forskellige muskelgrupper (f.eks albue flexors, håndled, knæ flexors extensors, plantar flexors). Men nerve tilgængelighed gørteknik vanskelig i nogle muskler grupper. Plantar flexor muskler, især triceps surae (soleus og gastrocnemii) muskler, ofte undersøgt i litteraturen 24. Faktisk er disse muskler involveret i bevægelse, begrunder deres særlige interesse. Afstanden mellem stimulering websted og optagelse elektroder gør det muligt at identificere de forskellige fremkaldte bølger af triceps surae muskler. Den overfladiske del af den bageste tibial nerve i knæhasen og det store antal spindler gør det nemmere at optage refleks respons sammenlignet med andre muskler 24. Af disse grunde den aktuelt præsenteret refleks metode fokuserer på de triceps surae gruppe af muskler (soleus og gastrocnemius). Formålet med denne protokol er derfor at beskrive perkutan nervestimulering teknik til at undersøge neuromuskulære funktion i triceps surae.

Protocol

De eksperimentelle procedurerne modtaget Institutionel etisk godkendelse og er i overensstemmelse med Helsinki-erklæringen. Data blev indsamlet fra et repræsentativt deltager, der var klar over de procedurer og gav sit skriftligt informeret samtykke. 1. Instrument Forberedelse Rens huden ved elektroden placering ved barbering, og fjerne snavs med alkohol for at opnå lav impedans (<5 kohm). Placer to AgCI overfladeelektroder (indspilning diameter på 10 mm) på 2/3 …

Representative Results

Stigende stimulus intensitet fører til en anden udvikling i respons amplituder mellem H- og M-bølger. I hvile, H-refleksen når en maksimal værdi, inden de helt fraværende fra EMG-signalet, mens M bølge progressivt, indtil den når et plateau ved maksimal intensitet (se figur 4 for en grafisk afbildning af M-bølgen og figur 6 for udviklingen af M-bølger og H-refleks med intensitet). For soleus muskel, latenstiden mellem stimulus debut og M-bølge er ca. 10 millisekunder (…

Discussion

Perkutan nervestimulation muliggør kvantificering af adskillige egenskaber ved den neuromuskulære system, ikke kun for at forstå den grundlæggende kontrol med neuromotorisk funktion i raske mennesker, men også for at kunne analysere akutte eller kroniske tilpasninger ved træthed eller uddannelse 17. Dette er meget gavnligt, især for opslidende protokoller, hvor målingerne skal udføres så hurtigt som muligt efter træning ende for at undgå virkningerne af hurtig genopretning 42.

<p cl…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

Biodex dynamometer Biodex Medical System Inc., New York, USA www.biodex.com
MP150 Data Acquisition System Biopac Systems Inc., Goleta, USA
Acknowledge 4.1.0 software Biopac Systems Inc., Goleta, USA www.biopac.com
DS7A constant current high voltage stimulator Digitimer, Hertfordshire, UK www.digitimer.com
Silver chloride surface electrodes Control Graphique Medical, Brie-Comte-Robert, France
Computer
1 Cable for connecting the Biodex to the MP150
1 Cable for connecting the Digitimer to the MP150
1 Cable for connecting the MP150 to the computer

References

  1. Desmedt, J. E., Hainaut, K. Kinetics of myofilament activation in potentiated contraction staircase phenomenon in human skeletal muscle. Nature. 217 (5128), 529-532 (1968).
  2. Bouisset, S., Maton, B. Quantitative relationship between surface EMG and intramuscular electromyographic activity in voluntary movement. American Journal of Physical Medicine. 51 (6), 285-295 (1972).
  3. Gabriel, D. A. Effects of monopolar and bipolar electrode configurations on surface EMG spike analysis. Medical Engineering and Physics. 33 (9), 1079-1085 (2011).
  4. Merletti, R., Rainoldi, A., Farina, D. Surface electromyography for noninvasive characterization of muscle. Exercise and Sport Sciences Reviews. 29 (1), 20-25 (2001).
  5. Lepers, R. Aetiology and time course of neuromuscular fatigue during prolonged cycling exercises. Science, & Motricité. 52, 83-107 (2004).
  6. Baudry, S., Klass, M., Pasquet, B., Duchateau, J. Age related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions. European Journal of Applied Physiology. 100 (5), 515-525 (2007).
  7. Place, N., Yamada, T., Bruton, J. D., Westerblad, H. Muscle fatigue From observations in humans to underlying mechanisms studied in intact single muscle fibres. European Journal of Applied Physiology. 110 (1), 1-15 (2010).
  8. Scaglioni, G., Narici, M. V., Maffiuletti, N. A., Pensini, M., Martin, A. Effect of ageing on the electrical and mechanical properties of human soleus motor units activated by the H reflex and M wave. The Journal of Physiology. 548 (Pt. 2), 649-661 (2003).
  9. Schieppati, M. The Hoffmann reflex a means of assessing spinal reflex excitability and its descending control in man. Progress in Neurobiology. 28 (4), 345-376 (1987).
  10. Pierrot Deseilligny, E., Burke, D. . The circuitry of the human spinal cord: its role in motor control and movement disorders. , (2005).
  11. Duclay, J., Pasquet, B., Martin, A., Duchateau, J. Specific modulation of corticospinal and spinal excitabilities during maximal voluntary isometric shortening and lengthening contractions in synergist muscles. The Journal of Physiology. 589 (Pt. 11), 2901-2916 (2011).
  12. Grosprêtre, S., Papaxanthis, C., Martin, A. Modulation of spinal excitability by a sub threshold stimulation of M1 area during muscle lengthening. 神经科学. 263, 60-71 (2014).
  13. Mynark, R. G. Reliability of the soleus H reflex from supine to standing in young and elderly. Clinical Neurophysiology. 116 (6), 1400-1404 (2005).
  14. Palmieri, R. M., Hoffman, M. A., Ingersoll, C. D. Intersession reliability for H reflex measurements arising from the soleus peroneal and tibialis anterior musculature. The International Journal of Neuroscience. 112 (7), 841-850 (2002).
  15. Chen, Y. S., Zhou, S., Cartwright, C., Crowley, Z., Baglin, R., Wang, F. Test retest reliability of the soleus H reflex is affected by joint positions and muscle force levels. Journal of Electromyography and Kinesiology. 20 (5), 987-987 (2010).
  16. Lehman, G. J., McGill, S. M. The importance of normalization in the interpretation of surface electromyography A proof of principle. Journal of Manipulative and Physiological Therapeutics. 22 (7), 444-446 (1999).
  17. Lepers, R. Interest and limits of percutaneous nerve electrical stimulation in the evaluation of muscle fatigue. Science, & Motricité. 70 (70), 31-37 (2010).
  18. Merton, P. A. Voluntary strength and fatigue. The Journal of Physiology. 123, 553-564 (1954).
  19. Gandevia, S. C. Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews. 81 (4), 1725-1789 (2001).
  20. Shield, A., Zhou, S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Medicine. 34 (4), 253-267 (2004).
  21. Rozand, V., Pageaux, B., Marcora, S. M., Papaxanthis, C., Lepers, R. Does mental exertion alter maximal muscle activation. Frontiers in Human Neuroscience. 8, 755 (2014).
  22. Place, N., Maffiuletti, N. A., Martin, A., Lepers, R. Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle and Nerve. 35 (4), 486-495 (2007).
  23. Kannus, P. Isokinetic evaluation of muscular performance: implications for muscle testing and rehabilitation. International Journal of Sports Medicine. 15, S11-S18 (1994).
  24. Tucker, K. J., Tuncer, M., Türker, K. S. A review of the H reflex and M wave in the human triceps surae. Human Movement Science. 24 (5-6), 667-688 (2005).
  25. Taylor, N. A., Sanders, R. H., Howick, E. I., Stanley, S. N. Static and dynamic assessment of the Biodex dynamometer. European Journal of Applied Physiology and Occupational Physiology. 62 (3), 180-188 (1991).
  26. Sale, D., Quinlan, J., Marsh, E., McComas, A. J., Belanger, A. Y. Influence of joint position on ankle plantarflexion in humans. Journal of Applied Physiology. 52 (6), 1636-1642 (1982).
  27. Cattagni, T., Martin, A., Scaglioni, G. Is spinal excitability of the triceps surae mainly affected by muscle activity or body position. Journal of Neurophysiology. 111 (12), 2525-2532 (2014).
  28. Gerilovsky, L., Tsvetinov, P., Trenkova, G. Peripheral effects on the amplitude of monopolar and bipolar H-reflex potentials from the soleus muscle. Experimental Brain Research. 76 (1), 173-181 (1989).
  29. Schieppati, M. The Hoffmann reflex a means of assessing spinal reflex excitability and its descending control in man. Progress in Neurobiology. 28 (4), 345-376 (1987).
  30. Hermens, H. J., Freriks, B., Disselhorst Klug, C., Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology. 10 (5), 361-374 (2000).
  31. Kamen, G., Sison, S. V., Du, C. C., Patten, C. Motor unit discharge behavior in older adults during maximal effort contractions. Journal of Applied Physiology. 79 (6), 1908-1913 (1995).
  32. Neyroud, D., Rüttimann, J., et al. Comparison of neuromuscular adjustments associated with sustained isometric contractions of four different muscle groups. Journal of Applied Physiology. 114, 1426-1434 (2013).
  33. Rupp, T., Girard, O., Perrey, S. Redetermination of the optimal stimulation intensity modifies resting H-reflex recovery after a sustained moderate-intensity muscle contraction. Muscle and Nerve. 41 (May), 642-650 (2010).
  34. Zehr, E. P. Considerations for use of the Hoffmann reflex in exercise studies. European Journal of Applied Physiology. 86 (6), 455-468 (2002).
  35. Gondin, J., Duclay, J., Martin, A. Soleus and gastrocnemii evoked V wave responses increase after neuromuscular electrical stimulation training. Journal of Neurophysiology. 95 (6), 3328-3335 (2006).
  36. Rochette, L., Hunter, S. K., Place, N., Lepers, R. Activation varies among the knee extensor muscles during a submaximal fatiguing contraction in the seated and supine postures. Journal of Applied Physiology. 95 (4), 1515-1522 (2003).
  37. Fuglevand, A. J., Zackowski, K. M., Huey, K. A., Enoka, R. M. Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. The Journal of Physiology. 460, 549-572 (1993).
  38. Vandervoort, A. A., McComas, A. J. Contractile changes in opposing muscles of the human ankle joint with aging. Journal of Applied Physiology. 61 (1), 361-367 (1986).
  39. Grosprêtre, S., Martin, A. Conditioning effect of transcranial magnetic stimulation evoking motor evoked potential on V wave response. Physiological Reports. 2 (11), e12191 (2014).
  40. Allen, G. M., Gandevia, S. C., McKenzie, D. K. Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle and Nerve. 18 (6), 593-600 (1995).
  41. Cooper, M. A., Herda, T. J., Walter Herda, A. A., Costa, P. B., Ryan, E. D., Cramer, J. T. The reliability of the interpolated twitch technique during submaximal and maximal isometric muscle actions. Journal of Strength and Conditioning Research. 27 (10), 2909-2913 (2013).
  42. Froyd, C., Millet, G. Y., Noakes, T. D. The development of peripheral fatigue and short term recovery during self paced high intensity exercise. The Journal of Physiology. 591 (Pt 5), 1339-1346 (2013).
  43. Pierrot Deseilligny, E., Morin, C., Bergego, C., Tankov, N. Pattern of group I fibre projections from ankle flexor and extensor muscles in man. Experimental Brain Research. 42 (3-4), 337-350 (1981).
  44. Brooke, J. D., McIlroy, W. E., et al. Modulation of H reflexes in human tibialis anterior muscle with passive movement. Brain Research. 766 (1-2), 236-239 (1997).
  45. Hultborn, H., Meunier, S., Morin, C., Pierrot Deseilligny, E. Assessing changes in presynaptic inhibition of I a fibres a study in man and the cat. The Journal of Physiology. 389, 729-756 (1987).
  46. Meunier, S., Pierrot Deseilligny, E. Cortical control of presynaptic inhibition of Ia afferents in humans. Experimental Brain Research. 119 (4), 415-426 (1998).
  47. Aymard, C., Baret, M., Katz, R., Lafitte, C., Pénicaud, A., Raoul, S. Modulation of presynaptic inhibition of la afferents during voluntary wrist flexion and extension in man. Experimental Brain Research. 137 (1), 127-131 (2001).
  48. Abbruzzese, G., Trompetto, C., Schieppati, M. The excitability of the human motor cortex increases during execution and mental imagination of sequential but not repetitive finger movements. Experimental Brain Research. 111 (3), 465-472 (1996).
  49. Garland, S. J., Klass, M., Duchateau, J. Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans. Journal of Neurophysiology. 99, 554-563 (2008).
  50. Rodriguez Falces, J., Place, N. Recruitment order of quadriceps motor units Femoral nerve vs direct quadriceps stimulation. European Journal of Applied Physiology. 113, 3069-3077 (2013).
  51. Rodriguez Falces, J., Maffiuletti, N. A., Place, N. Spatial distribution of motor units recruited during electrical stimulation of the quadriceps muscle versus the femoral nerve. Muscle and Nerve. 48 (November), 752-761 (2013).
  52. Bathien, N., Morin, C. Comparing variations of spinal reflexes during intensive and selective attention (author’s transl). Physiology, & Behavior. 9 (4), 533-538 (1972).
  53. Earles, D. R., Koceja, D. M., Shively, C. W. Environmental changes in soleus H reflex excitability in young and elderly subjects. The International Journal of Neuroscience. 105 (1-4), 1-13 (2000).
  54. Paquet, N., Hui Chan, C. W. Human soleus H reflex excitability is decreased by dynamic head and body tilts. Journal of Vestibular Research Equilibrium, & Orientation. 9 (5), 379-383 (1999).
  55. Miyahara, T., Hagiya, N., Ohyama, T., Nakamura, Y. Modulation of human soleus H reflex in association with voluntary clenching of the teeth. Journal of Neurophysiology. 76 (3), 2033-2041 (1996).
  56. Pinniger, G. J., Nordlund, M. M., Steele, J. R., Cresswell, a. GH reflex modulation during passive lengthening and shortening of the human triceps surae. Journal of Physiology. 534 (Pt 3), 913-923 (2001).
  57. Tallent, J., Goodall, S., Hortobágyi, T., St Clair Gibson, A., French, D. N., Howatson, G. Repeatability of corticospinal and spinal measures during lengthening and shortening contractions in the human tibialis anterior muscle). PLoS ONE. 7 (4), e35930 (2012).
  58. Grospretre, S., Martin, A. H. reflex and spinal excitability methodological considerations. Journal of Neurophysiology. 107 (6), 1649-1654 (2012).
  59. Hugon, M. Methodology of the Hoffmann reflex in man. New Developments in Electromyography and Chemical Neurophysiology. 3m, 277-293 (1973).
  60. Bigland Ritchie, B., Zijdewind, I., Thomas, C. K. Muscle fatigue induced by stimulation with and without doublets. Muscle and Nerve. 23 (9), 1348-1355 (2000).
  61. Kent Braun, J. A., Le Blanc, R. Quantitation of central activation failure during maximal voluntary contractions in humans. Muscle and Nerve. 19 (7), 861-869 (1996).
  62. Herbert, R. D., Gandevia, S. C. Twitch interpolation in human muscles mechanisms and implications for measurement of voluntary activation. Journal of Neurophysiology. 82, 2271-2283 (1999).
  63. Miller, M., Downham, D., Lexell, J. Superimposed single impulse and pulse train electrical stimulation A quantitative assessment during submaximal isometric knee extension in young healthy men. Muscle and Nerve. 22 (8), 1038-1046 (1999).
  64. Button, D. C., Behm, D. G. The effect of stimulus anticipation on the interpolated twitch technique. Journal of Sports Science and Medicine. 7 (4), 520-524 (2008).
  65. Goss, D. a., Hoffman, R. L., Clark, B. C. Utilizing Transcranial Magnetic Stimulation to Study the Human Neuromuscular System. Journal of Visualized Experiments. (59), e3387 (2012).
  66. Sartori, L., Betti, S., Castiello, U. Corticospinal excitability modulation during action observation. Journal Of Visualized Experiments: Jove. (82), 51001 (2013).
  67. Rozand, V., Lebon, F., Papaxanthis, C., Lepers, R. Does a mental training session induce neuromuscular fatigue. Medicine and Science in Sports and Exercise. 46 (10), 1981-1989 (2014).
  68. Rozand, V., Cattagni, T., Theurel, J., Martin, A., Lepers, R. Neuromuscular fatigue following isometric contractions with similar torque time integral. International Journal of Sports Medicine. 36, 35-40 (2015).
  69. Belanger, A. Y., McComas, A. J. Extent of motor unit activation during effort. Journal of Applied Physiology. 51 (5), 1131-1135 (1981).
  70. Morse, C. I., Thom, J. M., Davis, M. G., Fox, K. R., Birch, K. M., Narici, M. V. Reduced plantarflexor specific torque in the elderly is associated with a lower activation capacity. European Journal of Applied Physiology. 92 (1-2), 219-226 (2004).
  71. Dalton, B. H., McNeil, C. J., Doherty, T. J., Rice, C. L. Age related reductions in the estimated numbers of motor units are minimal in the human soleus. Muscle and Nerve. 38 (3), 1108-1115 (2008).
  72. Hunter, S. K., Todd, G., Butler, J. E., Gandevia, S. C., Taylor, J. L. Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions. Journal of Applied Physiology. 105 (4), 1199-1209 (2008).
  73. Jakobi, J. M., Rice, C. L. Voluntary muscle activation varies with age and muscle group. Journal of Applied Physiology. 93 (2), 457-462 (2002).
  74. Lepers, R., Millet, G. Y., Maffiuletti, N. a Effect of cycling cadence on contractile and neural properties of knee extensors. Medicine and Science in Sports and Exercise. 33 (11), 1882-1888 (2001).
  75. Duchateau, J., Hainaut, K. Isometric or dynamic training differential effects on mechanical properties of a human muscle. Journal of Applied Physiology. 56 (2), 296-301 (1984).
  76. Millet, G. Y., Martin, V., Martin, A., Vergès, S. Electrical stimulation for testing neuromuscular function From sport to pathology. European Journal of Applied Physiology. 111, 2489-2500 (2011).
  77. Cattagni, T., Scaglioni, G., Laroche, D., Van Hoecke, J., Gremeaux, V., Martin, A. Ankle muscle strength discriminates fallers from non fallers. Frontiers in Aging Neuroscience. 6, 336 (2014).
  78. Horstman, A. M., Beltman, M. J., et al. Intrinsic muscle strength and voluntary activation of both lower limbs and functional performance after stroke. Clinical Physiology and Functional Imaging. 28 (4), 251-261 (2008).
  79. Sica, R. E., Herskovits, E., Aguilera, N., Poch, G. An electrophysiological investigation of skeletal muscle in Parkinson’s disease. Journal of the Neurological Sciences. 18 (4), 411-420 (1973).
  80. Knikou, M., Mummidisetty, C. K. Locomotor Training Improves Premotoneuronal Control after Chronic Spinal Cord Injury. Journal of Neurophysiology. 111 (11), 2264-2275 (2014).

Play Video

Cite This Article
Rozand, V., Grosprêtre, S., Stapley, P. J., Lepers, R. Assessment of Neuromuscular Function Using Percutaneous Electrical Nerve Stimulation. J. Vis. Exp. (103), e52974, doi:10.3791/52974 (2015).

View Video