Insight into the complex actions of the brain requires advanced research tools. Here we demonstrate a novel silk-collagen-based 3D engineered model of neural tissue resembling brain-like architecture. The model can be used to study neuronal network assembly, axonal guidance, cell-cell interactions and electrical activity.
Despite huge efforts to decipher the anatomy, composition and function of the brain, it remains the least understood organ of the human body. To gain a deeper comprehension of the neural system scientists aim to simplistically reconstruct the tissue by assembling it in vitro from basic building blocks using a tissue engineering approach. Our group developed a tissue-engineered silk and collagen-based 3D brain-like model resembling the white and gray matter of the cortex. The model consists of silk porous sponge, which is pre-seeded with rat brain-derived neurons, immersed in soft collagen matrix. Polarized neuronal outgrowth and network formation is observed with separate axonal and cell body localization. This compartmental architecture allows for the unique development of niches mimicking native neural tissue, thus enabling research on neuronal network assembly, axonal guidance, cell-cell and cell-matrix interactions and electrical functions.
Het centrale zenuwstelsel (CNS) kan worden beïnvloed door een verscheidenheid van aandoeningen waarbij vasculaire, structurele, functionele, infectieuze of degeneratieve. Naar schatting 6,8 miljoen mensen per jaar sterven als gevolg van neurologische aandoeningen, die een groeiende sociaal-economische last vertegenwoordigt wereldwijd 1. Slechts enkele van de aandoeningen beschikbare behandelingen. Daarom is er dringend behoefte aan innovatieve therapeutische strategieën voor patiënten met neurologische aandoeningen. Helaas zijn veel CNS-gerichte therapieën falen tijdens klinische studies, voor een deel te wijten aan het gebruik van onvoldoende pre-klinisch onderzoek modellen, die niet de beoordeling van acute en chronische effecten met fysiologisch relevante functionele uitlezing toestaan.
Ondanks aanzienlijke onderzoeksinspanningen van de afgelopen decennia, is er een enorme hoeveelheid onbekend over de structuur en functie van het centrale zenuwstelsel. Om meer kennis op te doen, diermodellen vaak onsed model pathologische toestanden, zoals traumatisch hersenletsel (TBI) of dementie, vooral in preklinische studies. Echter, dieren aanzienlijk verschillen van mensen zowel anatomie van CNS, evenals in functie genexpressie en metabolisme 2-4. Anderzijds, 2D in vitro kweken zijn de gebruikte methode om celbiologie onderzoeken en worden routinematig gebruikt voor drug discovery. Echter, 2D celkweken niet de complexiteit en fysiologische relevantie ten opzichte van menselijke hersenen 5-7. Hoewel er geen vervanging voor de lage kosten en eenvoud van 2D celkweek onderzoeken of de complexiteit door diermodellen kunnen 3D weefselengineering verbeterde onderzoeksmodellen genereren om het vacuüm tussen de 2D in vitro en in vivo technieken te sluiten. 3D tissue engineering biedt meer fysiologisch relevante bereikt door 3D cel-cel interacties en extracellulaire signalen die de Biomaterialen experimentele omstandigheden. Despite de significant bewijs achter de waarde van 3D-culturen, zijn er momenteel slechts een paar 3D-CNS weefsel modellen zoals stamcellen afgeleide organoïde culturen 8-10, neurospheroids 11 en verspreid hydrogel culturen 12,13. Geavanceerde technische methoden waaronder meerlagige lithografie 14 en 3D printing 15 zijn gebruikt voor het bestuderen long-, lever- en nierweefsel. Er is echter weinig CNS 3D-modellen die het mogelijk maken gecompartimenteerde neuronale groei, zoals het nabootsen van de corticale architectuur en biologie. Gescheiden groei van neurieten van neuronale cellichamen is eerder in 2D culturen aangetoond met behulp van microfabricage 16,17 waardoor de studie van de axon darmkanaal tracing, calciuminflux, netwerkarchitectuur en activiteiten. Dit idee inspireerde ons om een 3D-gepolariseerde zenuwweefsel, waar cellichamen en axonale stukken bevinden zich in verschillende compartimenten nabootsen van de gelaagde architectuur van de hersenen 18 ontwikkelen </sup>. Onze benadering is gebaseerd op het gebruik van unieke zijde scaffold ontwerp dat een hoge dichtheid van cellen herbergt in een gesloten volume en maakt uitgroei van dichte axonale netwerk een collageengel. Hier laten we de volledige assemblage procedure van de hersenen-achtig weefsel met inbegrip van het schavot fabricage en neuronale cultuur.
Here we described the guidelines to assemble a compartmentalized 3D brain-like tissue model. The model is characterized by dense polarized culture of neurons resulting in the development of two morphologically different compartments: one containing densely packed cell bodies, second containing pure axonal networks. Overall, the scaffold architecture and growth pattern mimic brain cortical tissue including the six laminar layers and white matter tracts21.
The donut-shaped silk protein-based tissue model allows for modifications and tuning of mechanical properties, versatile structural forms, hydrogel fillers and cellular components. Thus, this tissue model establishes a base platform for a wide range of studies. Silk is a favorable candidate for biomaterial platforms due to its biocompatibility, aqueous-based processing, and robust mechanical and degradation properties22. The silk matrix also serves as a stable anchor to reduce collagen gel contraction over time in culture. The properties such as silk concentration and porosity of the scaffold used in this model have been previously adjusted to achieve optimal cell growth and mechanical properties resulting in brain-like tissue elasticity18,23,24. We suggest to keep these parameters constant to ensure the successful outcome and reproducibility of the experiments.
The 3D neuronal network formation was achieved by combining two types of biomaterials with different mechanical properties: a stiff scaffold to provide neuronal anchoring and a softer gel matrix to permit axon penetration and connectivity in 3D. Selective material preferences of the silk scaffold and soft hydrogel provide the underlying principle for compartmentalizing the neurons from the axonal connections. Due to the inert nature of the silk scaffold, functionalization with poly-D-lysine is required for neuronal attachment. However, other cell adhesion promoting factors can be applied such as RGD25 or fibronectin26. To achieve the 3D network formation the silk scaffold needs to be filled with hydrogel in a timely manner as soon as neurons are attached to the scaffold. Likewise, the collagen matrix filler can be replaced by other hydrogels, thus allowing the study of the influence of 3D extracellular environments on axonal network formation to serve as a platform to evaluate novel hydrogels in terms of neuronal compatibility. Additionally, apart from rat cortical neurons other neuronal sources such as hippocampal neurons or induced pluripotent cell (iPSc)-derived neurons can be utilized. Moreover, the tissue model can be used to study heterocellular interactions by including glial cells along with neurons and to build more complex brain-like tissue.
As shown previously, our model can be utilized to evaluate neuronal functionality in 3D microenvironment with a variety of assays such as cell viability, gene expression, LC-MS/MS and electrophysiology, thus demonstrating physiological relevance of the model18. Other methods, which are frequently utilized to evaluate 3D tissue-engineered constructs, such as immunostaining and microscopy8,9,11 can also be used to assess cell distribution and extent of axonal network formation. However, it has to be noted, that due to the high density of the collagen matrix, the penetration of antibodies and depth of the imaging is limited to few hundred micrometers. Moreover, the signal to noise ratio may be affected by nonspecific background fluorescence. This can be overcome by using lipophilic cell tracers and genetically expressed fluorescent proteins which diminish the need for immunostaining11. Alternatively, the imaging can be performed with 2-photon microscopy instead of usual one-photon technique, which may reduce the signal loss, photobleaching, and can be extended to several hundred micrometers of depth.
Summarizing, the silk and collagen-based brain-like tissue offers a robust platform to study neuronal networks in 3D and is a starting point for the development of more advanced models of neurological disorders in the future. Independent from the mode of evaluation, the relative simplicity of this tissue model supports its utility, success and reproducibility.
The authors have nothing to disclose.
We thank the laboratory of Dr. Stephen Moss for providing embryonic rat brain tissues. M.D.T. designed the original protocol. This work was funded by National Institutes of Health P41 Tissue Engineering Resource Center Grant EB002520. K.C. was supported with Postdoctoral Fellowship from German Research Foundation (DFG) (CH 1400/2-1).
Na2CO3 | Sigma-Aldrich | 223530 | – |
LiBr | Sigma-Aldrich | 213225 | – |
MWCO 3500 dialysis cassettes | Thermo Fisher | 66110 | – |
Heating plate | Fisher Scientific | Isotemp | – |
Centrifuge 5804 R | Eppendorf | – | – |
Sieve | Fisher Scientific | – | No. 270, No. 35, No. 30 |
PTFE mold | – | – | made in house (Figure 1) 10 cm diameter, 2 cm height |
NaCl | Sigma-Aldrich | 71382 | – |
Biopsy Punch 5mm | World Precision Instrument | 501909 | – |
Biopsy Punch 2mm | World Precision Instrument | 501908 | – |
poly-D-lysine | Sigma-Aldrich | P6407-5MG | final concentration 10 ug/ml, dissolved in water |
PBS | Sigma-Aldrich | D1283-500ML | – |
Trypsin | Sigma-Aldrich | T4049-500ML | – |
DNase | Roche | 10104159001 | final concentration 0.3% |
Soybean protein | Sigma-Aldrich | T6522-100MG | final concentration 1 mg/ml |
Neurobasal medium | Gibco | 21103049 | warm up to 37°C before use |
B27 supplement 50x | Gibco | 17504-044 | – |
Glutamax | Gibco | 35050-061 | – |
Penicilin Streptomycin | Corning | 30-002-CI | – |
Collagen I, rat tail, 100 mg | Corning | 354236 | final concentration 3 mg/ml |
NaOH | Sigma-Aldrich | S2770 | corrosive |
Propidium Iodide | Sigma-Aldrich | P4170-10MG | toxic |
Fluorescein Diacetate | Sigma-Aldrich | F7378-5G | – |
Olympus MVX10 | Olympus | – | – |
Paraformaldehyde | Sigma-Aldrich | P6148 | toxic, final concentration 4% |
Bovine Serum Albumin | Sigma-Aldrich | A7906-10G | – |
anti-βIIITubulin antibody | Sigma-Aldrich | T2200 | rabbit 1:500 |
anti-rabbit Alexa-546 | Molecular Probes | A11010 | goat 1:250 |
goat serum | Sigma-Aldrich | G9023-5ML | – |
Leica SP2 confocal microscope | Leica | – | objective 20x |
QIAshredder | Qiagen | 79654 | – |
AllPrep DNA/RNA/Protein Mini Kit | Qiagen | 80004 | – |
Ethyl alcohol, Pure | Sigma-Aldrich | E7023 | – |
2-Mercaptoethanol | Sigma-Aldrich | 63689 | |
NanoDrop 2000c/2000 UV-Vis Spectrophotometer | Thermo Scientific | – | – |
BCA protein assay | Thermo Scientific | 23225 | – |
Plate reader Spectramax M2 | Molecular Devices | – | absorbance 562 nm |
Micro Scissors, Economy, Vannas-type | TedPella | 1346 | – |