A procedure for the preparation of porous hybrid separation media composed of a macroporous polymer monolith internally coated by a high surface area microporous coordination polymer is presented.
We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process.
The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications.
多孔配位聚合物(的PCP)是基于由有机配位体与重复在1,2或3个维度,可以是无定形或结晶1-3延伸协调实体联金属中心配位化合物。在最近几年中,此类多孔材料已引起了广泛的关注,因为它们的高孔隙率,宽化学可调性,并且它们的稳定性。主治医师已探索了广泛的应用,包括气体储存,气体分离,和催化3-6,和最近,主治医师的第一分析应用已经描述7。
因为它们的增强的化学功能和高孔隙率的PCP已针对其巨大潜力的纯化过程和色谱分离的提高,以及一些关于本主题的报告已经发表7-13。然而,初级保健医生的表现并不在目前的equivaleNT水平可能存在的色谱材料,由于通过这些固体填充床的大颗粒间的空隙快速扩散,因为它们通常是不规则形状的颗粒或晶体的形态。这个不规则分布填料导致低于预期的性能,以及高柱背压和不希望的峰形形貌14,15。
为了通过颗粒间的空隙,以解决快速扩散的问题,并伴随地提升的PCP的用于分析应用的性能的基础上,一个大孔聚合物整料16的混合材料的发展,它包含大孔的表面上的PCP会是可取的。聚合物整料是自包含的,单件材料,可以通过它们的气孔维持对流,这使得它们的最有效的替代品对珠粒填料,并已成功地由几个C商品化1 ompanies 17,18。多孔聚合物整料通常是基于一个单体的聚合和在致孔剂,这是典型的有机溶剂二元混合物的存在下,交联剂上。获得的单片材料具有microglobular结构和高的孔隙率和流动渗透性。
一种简单的方法来统一这些材料以制备含有五氯酚聚合物整料是基于在整体件的聚合混合物中直接加入作为合成的PCP的。这种方法导致的PCP大多埋在聚合物支架,和不活跃的最终材料14,15的进一步应用。不同的合成方法显然需要以,例如,开发的PCP,或晶体金属 – 有机骨架(MOFs)其中大部分包含在晶体内的孔是从聚合物整料的大孔可访问的均匀的膜。
吨“>此处我们报告一个简单协议,用于基于与合适的官能团为的PCP的连接,可以很容易地实现为大孔聚合物载体上的金属 – 有机聚合物混合材料(卫生部)的制备方法的自包含单-piece聚合物整料与最佳的性能流通应用的列格式的聚合物合成过程之后是一个简单的室温溶液系 方法上的整体件19-20的孔的内表面长出的PCP涂层。作为第一个例子,我们描述内的大孔聚(苯乙烯 – 二乙烯基苯 – 甲基丙烯酸)整料的制备的铁(III)benzenetricarboxylate(FeBTC)配位聚合物膜构成。这个方法是有效的用于制备的散装粉末以及毛细管柱和所描述的协议是很容易实现的其他的PCP。作为MOPHs作为功能材料的流动THROU的电位的例子GH应用,我们应用了开发FeBTC卫生部其中包含一个致密的涂层的Fe(III)的中心,以从消化蛋白质混合物利用磷酸和Fe的结合亲和力富集磷酸(三)。该开发协议21包括三个主要部分:大孔有机聚合物整体支持的准备;整料的孔的表面上的PCP涂层的增长;应用磷酸的富集。原聚合物整料包含能够结合金属羧酸官能团。协调对原始材料的初始金属位点,我们能够以生长PCP涂层( 图1A),结合了许多附加的金属位点成形的微孔网络。这使得所提出的卫生部材料萃取或纯化步骤如涉及金属物质,如固定的金属离子亲和层析(IMAC)技术的吸引力。使用对磷酸化肽的富集的毛细管柱的一般方法示于图1B。
大量粉末巨石的准备使?…
The authors have nothing to disclose.
This work has been performed at the Molecular Foundry, Lawrence Berkeley National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy, under Contract No. DE-AC02–05CH11231. The financial support of F.M. by a ME-Fulbright fellowship and A.S. by Higher Education Commission of Pakistan are gratefully acknowledged.
Polyimide-coated capillaries | Polymicro Technologies | TSP100375 | 100 μm i.d. |
3-(trimethoxysilyl)propyl methacrylate, 98% | Sigma-Aldrich | 440159 | |
Styrene, 99% | Sigma-Aldrich | W323306 | Technical grade |
Divinylbenzene, 80% | Sigma-Aldrich | 414565 | |
Methacrylic acid, 98% | Mallinckrodt | MK150659 | |
Toluene, ≥99.5% | EMD chemicals | MTX0735-6 | |
Isooctane, ≥99.5% | Sigma-Aldrich | 650439 | |
2,2'-azobisisobutyronitrile, 98% | Sigma-Aldrich | 441090 | |
Aluminium oxide (basic alumina) | Sigma-Aldrich | 199443 | |
Iron (III) chloride hexahydrate, 97% | Sigma-Aldrich | 236489 | |
1,3,5-benzenetrycarboxylic acid, 95% | Sigma-Aldrich | 482749 | |
Acetonitrile, ≥99.5% | Sigma-Aldrich | 360457 | |
Ammonium bicarbonate, ≥99.5% | Sigma-Aldrich | 9830 | |
Trifluoroacetic acid, ≥99% | Sigma-Aldrich | 302031 | |
Ethanol, ≥99.8% | Sigma-Aldrich | 2854 | |
Iodoacetamide, ≥99% | Sigma-Aldrich | I1149 | |
Dithiothreitol, ≥99% | Sigma-Aldrich | 43819 | |
Monobasic sodium phosphate dihydrate, ≥99% | Sigma-Aldrich | 71505 | |
Dibasic sodium phosphate dihydrate, ≥99% | Sigma-Aldrich | 71643 | |
Phosphoric acid, ≥85% | Sigma-Aldrich | 438081 | |
2,5-dihydroxybenzoic acid, ≥99% | Sigma-Aldrich | 85707 | |
Trypsin | Sigma-Aldrich | T8003 | Bovine pancreas |
β-casein | Sigma-Aldrich | C6905 | Bovine milk |
ZipTip pipette tips | Merck Millipore | ZTC18S096 | C18 resin |