Accuracy and precision of the techniques used to measure methane emissions from ruminant animals are critically important for the success of greenhouse gas mitigation efforts. This manuscript describes the principles and operation of an automated system to monitor methane and carbon dioxide mass fluxes from the breath of ruminant animals.
反刍动物(驯养的或野生)发射甲烷 (CH 4)通过肠道发酵在他们的消化道和从储存期间粪肥的分解。这些过程的温室气体(GHG)从动物生产系统排放的主要来源。用于测量肠溶CH 4技术从直接测量不同(呼吸腔室,这是高度精确的,但具有有限的适用性)各种间接方法(监听器,激光技术,这是实际的,但具有可变的准确度)。六氟化硫(SF 6)示踪气体方法是常用的动物科学家,最近来衡量肠道甲烷生产,应用的自动头腔系统(AHCS)(绿色饲料,C-锁公司,拉皮德城的, SD),这是该实验的焦点,一直在增长。 AHCS是一个自动化的系统来监控甲烷和二氧化碳(CO 2)从质量通量呼吸反刍动物。在一个典型的AHCS操作,小批量下料的饲料被分配到各个动物每天吸引他们到AHCS多次。当动物访问AHCS,风扇系统能让空气经过动物的枪口入进气歧管,并通过空气收集管,其中连续气流速率进行测量。空气的子样本被泵出管的成非色散红外线传感器的 CH 4和CO 2浓度的连续测量。 AHCS对呼吸室或SF 6场的比较表明,AHCS产生重复和精确的CH 4排放的结果,前提是动物参观AHCS都足以使排放量估计有代表性瘤胃产气的昼夜节律。在这里,我们演示了如何使用AHCS的从给予控制饮食或补充工业级腰果饮食奶牛4通量测量二氧化碳和甲烷外壳液体。
动物产品代表的温室气体(GHG)的全球排放量的显著来源,无论是直接产生甲烷和一氧化二氮( 例如 ,肠道发酵和粪肥管理)或间接( 比如 ,从进料,生产活动和转化森林到牧场或农田)。估计全球温室气体排放家畜贡献约7 1〜18%2变化,这取决于所使用的分析和方法的界限。在美国,牲畜为代表的温室气体排放总量的3.1%,2009年3。
肠道CH 4是最大的贡献者来自畜牧业的温室气体排放。因此,动物科学家们发现上缓解技术以减少肠道甲烷生产反刍动物集中他们的研究。在许多情况下,结果是有问题的科学价值,由于实验设计Ø不足R值测量方法1。因此,测量技术的准确度和精密度都严格温室气体减排研究的重要组成部分。大量文献都已经发表了关于这个话题在近几年4-7。有几种方法建立用于测量肠溶CH 4产生于反刍动物,包括呼吸室(高度准确的,但具有有限的适用性),示踪气体(六氟化硫; SF 6),和头腔室。虽然呼吸室被认为是“金标准”,用于测量瘤胃气体排放,其主要缺点是,动物的审判的数量通常是由于在某一特定研究机构提供商会在有限数量的限制。用于测量肠溶CH 4产生最实际和广泛使用的技术是对SF 6示踪气体的方法,最近,一个自动头室系统(AHCS,绿色饲料)将c一个监视器甲烷和CO 2的质量通量从8反刍动物的呼吸和嗳气气。无论是SF 6技术和AHCS使排放量要在自由放牧条件下或在自由和领带摊位谷仓大量动物的分析。的SF 6技术利用SF 6作为示踪气体,它是连续地从在呼出气体的样品的动物,收集的瘤胃插入渗透管,气体的分析适用于SF 6释放:CH 4比。 AHCS]是也基于使用示踪气体(丙烷)的自动化,头部室型系统。与呼吸腔室的方法,其中动物异常馈送和行为的条件下密闭,并通过SF 6示踪方法,该方法需要特殊的分析能力和设备(气体收集和 SF 6分析)以及大量的动物处理相比,AHCS是非-intrusive并且不太昂贵的掌握和操作。 AHCS的主要缺点包括不具代表性的采样(在应用,如放牧系统,其中,动物必须自愿访问单元),并使用诱饵饲料,这可能的气体测量期间表示多达动物的干物质摄取量的5%事件。最近的对比实验得出的结论是AHCS产生的排放率与那些使用呼吸室或SF 6技术9,10估计。
单机AHCS系统是围绕一个强大的自动进给器是易于运输通过手工或可被安装到装备有太阳能电池板(或其他电源),用于自主现场操作和长途旅行的拖车构成。该系统包括一个动物射频识别系统(RFID),一个诱饵系统,空气处理和测量系统,气体示踪系统,电子设备和通信系统,以及一个数据处理系统(<STRONG>图1)。更多细节可以在原专利文献11中找到。
下面介绍的例子AHCS操作协议是奶牛装在一个领带牛舍。该过程也适用于其他类型的容纳在类似设施牛(非哺乳期奶牛,小母牛,或肉牛)的。该实验的目的是证明AHCS的原理和操作为甲烷和二氧化碳从反刍动物排放的测量。
所述AHCS系统结合了动态外壳技术中,腔系统,以及用于甲烷和CO 2的质量流量测量示踪技术的元素。在数天的过程中,它收集多个样品从每只动物以限定平均日总气体质量通量。来识别动物和提供诱饵的正确量,RFID读取器被并入AHCS。 RFID标签被读取成动物开始将其头部插入送纸器。一旦动物识别,AHCS确定其是否有资格获得奖励的诱饵在一天中的特定时间(放牧或免费牛舍的应用程序)。每只动物的访问(基于红外传感器确定)的开始和结束时间被自动记录。诱饵递送系统是用来吸引动物AHCS周期性全天。通常,所述诱饵饲料造粒和可以含有草,苜蓿,粒浓缩物,糖蜜,和植物油。虽然动物访问AHCS,风扇拉风了它的头(约26升/分钟的速度),扫发出的CH 4和CO 2到进气歧管。空气流动的速率与一个热膜风速计在空气收集管的中间连续地测量。空气的连续的子样本被提取并传送到次级样品过滤,然后分成两个非分散红外分析仪,一个传感器对CO 2和一个用于CH 4。 AHCS还包括用于空气温度,空气湿度,诱饵降,系统电压,大气压力,丙烷流量,和头部位置的附加传感器。牧草和拖车式版本放牧系统包括一个杯形风速计(当地风速)和风向标(风向)。所有传感器数据被存储在本地的数据记录器和一个计算机,从而使AHCS自动地和独立地发挥作用。传感器数据也存储在内部标准USB(通用串行总线)存储器棒。 AHCS数据通常通过互联网链路传送,每小时一次,在那里它们被永久地记录在外部服务器。与互联网连接,用户可以远程登录到AHCS和控制单元,修改引诱时间表,并查看历史和实时数据,以及审查和监督AHCS功能。
总体而言,在美国宾夕法尼亚州立大学进行的实验表明,AHCS系统提供的甲烷和二氧化碳奶牛装在并列失速谷仓排放可靠的估计。 AHCS超过呼吸室的优点是,动物没有限制,并且是在其天然环境(即,在牧场),或可以自由移动(在自由牛舍)。 AHCS还建立比传统的呼吸室更便宜。此相对低的成本是非常重要的,特别是对CH 4的减轻研究在发展中国家。与SF 6跟踪比较ř方法,AHCS更易于操作,并且不需要复杂且昂贵的分析设备。也许AHCS的最明显的缺点,与商会和SF 6的方法(在放牧或自由牛舍环境中特别是)相比,是动物有主动接近单元,因此气体测量活动都依赖于动物访问。一天之内,这些动物的访问可能会或可能无法代表的CH 4产生的昼夜节律的。因此,在应用中,动物访问AHCS自愿,采样周期应足够长,或重复的足够次数。在宾夕法尼亚州立大学使用的领带摊位申请控制在24小时的饲养周期的数量和气体测量的时间分布,解决了这个问题。嗳气气体的过程中的供给周期(如在上述方案所示)足够采样为representati重要已经估计甲烷产量在牛的瘤胃中。饵饲料的过程中使用AHCS测量供给到动物的量在整体分析(即,必须添加到饲料被动物消耗的总金额),所以每单位进料的发光强度的DMI可以准确要考虑估计。在正常饲养条件下,所述饵料表示的奶牛的总的DMI和其作用,对瘤胃发酵的低于5%和CH 4的产生小。应该注意的是AHCS(和其它类似的系统)不会测量CH 4产生在动物的肠。后肠发酵,但是,有利于仅约3%的总甲烷排放量的在反刍动物7。
根据经验,测量有肠溶瘤胃气体生产中使用AHCS的几个重要组成部分:(1)动物必须习惯于诱饵进料(和AHCS),并具有吨ö喜欢它,以便接近和使用AHCS馈线;(2)动物的头,必须一路插入供给器,以便收集可靠的气体排放数据,(3)的AHCS校准程序,必须严格遵守,(4)具有足够的时间来收集采样个别动物之间的背景的 CH 4和CO 2的数据是重要的,特别是在领带或自由失速谷仓,和(5)是很重要的足够的数据被收集在一个采样周期(覆盖24小时内),以便通过AHCS产生的排数据代表实际的昼夜CH 4或CO 2排放量的动物。
对比测试,AHCS与建立CH 4测量技术支持了上述结论。例如,越来越小母牛的一项研究得出的结论是AHCS是能够从AHCS产生的牲畜和排放估算估算甲烷排放量的可比性由呼吸室 9而得到的值。这些作者指出,部署的AHCS单元和复制,必须仔细考虑,以确保足够数量的测量值获得。根据经验,8个采样的事件,交错,在3天时间内以覆盖24小时馈送周期(见协议以上)足以获得气体排放物的准确的测量,并在数据相对低的变异性(即,可接受的精度)。在与哺乳期奶牛的研究中,得出的结论是甲烷排放量由AHCS测量类似于从呼吸室和动物变异性衍生的文献值(11至12%的CV; 0.64〜0.81重复性)也内系列报道的呼吸室10。在最近发表的研究与泌乳牛,AHCS产生了较小的简历比SF 6方法(14.1至22.4%和16.0〜111%的SF 6)13 </SUP>。在宾夕法尼亚州立大学,拥有48泌乳奶牛,在瘤胃甲烷产量抑制了30%(P <0.001),进行了为期12周的实验中,我们得出的结论是AHCS和SF 6方法生产的类似CH 4排放结果:319 481克/每头牛每天(平均374克/ D; SEM = 15.9; CV = 13%)和345 485克/每头牛每天(平均396克/ D; SEM = 29.8; CV = 23 %)为AHCS 和 SF 6, 分别为14。
总之,准确,但测量甲烷生产在瘤胃中的实用技术是对温室气体减排的努力取得成功至关重要。 AHCS是已被证实可提供肠溶CH 4和CO 2的排放量从肉牛和奶牛的可靠和准确的估算值的自动气体测量系统。
The authors have nothing to disclose.
The authors would like to thank the staff of the Department of Animal Science’s Dairy Center for their conscientious care of the experimental cows used to generate data for this study.
AHCS | 1 | C-Lock, Inc. | |
Zero, 100 N2 | 1 | Air Liquide | 4 m3 sized tanks filled with 13,790 kPa |
Span, 0.15% CH4 and 1% CO2 | 1 | Air Liquide | 4 m3 sized tanks filled with 13,790 kPa |
Gas sampling bag | 2 | SKC, Inc. | FlexFoil® PLUS Breath-gas analysis bags |
Gas regulator | 2 | Scott Gasses | |
CO2 cylinder | 6 | JT | 90 g CO2 tanks |
Mass scale | 1 | A&D EJ6100 | > 4 kg, with 0.1 g resolution |
Propane cylinder 485 mL | 1 | Coleman | |
ISO 11784/11785 button ear tag | 40 | Allflex USA | One tag per animal |
Alleyway (for free-stalls, tie-stalls) | 2 | Behlen Country | One alleyway per unit |
30 m AC extension cord | 1 | HDX | |
A container with warm water (37-43°C) | 1 | N/A | |
Stopwatch (sec) | 1 | N/A |