Here a method to localize bacteria within paraffin-embedded tissues using DIG-labeled 16S rRNA-targeting DNA probes has been described. This protocol can be applied to study the role of bacteria in various diseases such as periodontitis, cancers, and inflammatory immune diseases.
The presence of bacteria within the pocket epithelium and underlying connective tissue in gingival biopsies from patients with periodontitis has been reported using various methods, including electron microscopy, immunohistochemistry or immunofluorescence using bacteria-specific antibodies, and fluorescent in situ hybridization (FISH) using a fluorescence-labeled oligonucleotide probe. Nevertheless, these methods are not widely used due to technical limitation or difficulties. Here a method to localize bacteria within paraffin-embedded tissues using DIG-labeled DNA probes has been introduced. The paraffin-embedded tissues are the most common form of biopsy tissues available from pathology banks. Bacteria can be detected either in a species-specific or universal manner. Bacterial signals are detected as either discrete forms (coccus, rod, fusiform, and hairy form) of bacteria or dispersed forms. The technique allows other histological information to be obtained: the epithelia, connective tissue, inflammatory infiltrates, and blood vessels are well distinguished. This method can be used to study the role of bacteria in various diseases, such as periodontitis, cancers, and inflammatory immune diseases.
Bacteria play a role in the etiology of various oral diseases such as periodontitis, pulpitis, pericoronitis, cellulitis, and osteomyelitis. In order to understand the role of bacteria in the pathogenesis of disease and to monitor the effect of treatments, localization of bacteria within the tissue is important. The presence of bacteria within gingival tissue from patients with periodontitis has been shown using various methods, including electron microscopy1,2, immunohistochemistry and immunofluorescence using bacteria-specific antibodies3-7, and fluorescent in situ hybridization (FISH)8 using a fluorescence-labeled oligonucleotide probe targeting 16S rRNA. Nevertheless, these methods are not widely used due to technical limitation or difficulties. Compared with antibodies, probes targeting 16S rRNA are easy to produce and achieve species-specificity. FISH has proven to be an excellent tool for the visualization of bacteria in their natural environments such as plaque biofilm. However, application of FISH to tissue samples is limited due to autofluorescence of various tissue components. For example, the strong autofluorescence of red blood cells often hampers the application of fluorescence technology to inflamed tissues when they involve bleeding9.
In order to localize bacteria within the inflamed gingival tissues, therefore, an in situ hybridization method using a digoxigenin (DIG)-labeled DNA probe has been developed and successfully applied10,11. Here a detailed protocol for the localization of bacteria within paraffin-embedded tissues using P. gingivalis-specific and universal eubacterial probes has been described. It is particularly focused on standardization of the method so that similar results can be reproduced in other laboratories. This protocol allows localization of bacteria within their histological context and the results are highly reproducible. The described protocol can be used to localize bacteria either in a species-specific or universal manner in various tissues. The universal probe is especially useful to detect bacteria in polymicrobial diseases and to study a potential role of bacteria in diseases where the role of specific bacteria is not known.
1. Probe Preparation
2. In Situ Hybridization
Note: To avoid drying of the specimens and reagents, perform all incubations in a humidified chamber lined with wet paper towels.
Figure 1 shows dot blotting of DIG-labeled probes compared with the positive control probe provided in the kit to determine their sensitivity. The 343 bp P. gingivalis-specific probe is 25 times more sensitive than the 70 bp eubacterial probe. Figure 2 shows in situ hybridization of gingival tissues obtained from patients with chronic periodontitis for detection of P. gingivalis and eubacteria. The bacterial signals, shown in violet, were detected within the epithelia, the lamina propria, and biofilm located outside the tissue. However, the distribution of P. gingivalis and eubacteria within the gingival tissue was different. At high magnification (1,000X), various shapes (coccus, rod, fusiform, and hairy form) of bacteria were visible using the eubacterial probe, while only rod shaped bacteria were detected by the P. gingivalis-specific probe. The dispersed forms of bacterial signals were also observed.
Hajishengallis et al. demonstrated the essential role of commensal bacteria in the development of P. gingivalis-induced experimental periodontitis in mice14. The application of dextran sulfate sodium (DSS), a tight junction (TJ)-disrupting chemical, onto gingival mucosa induced periodontitis and alveolar bone loss in mice13. The eubacterial probe successfully detected bacteria within the gingival tissues from the DSS group that were not detected by the P. gingivalis-specific probe (Figure 3).
The eubacterial probe is useful for the study of the potential involvement of bacteria in other diseases. Since the International Agency for Research on Cancer designated Helicobacter pylori as a grade I carcinogen for gastric cancer15, potential involvement of bacteria in the development of other cancers has been widely studied. When sections of lung biopsies diagnosed with squamous cell carcinoma were in situ hybridized with the eubacterial probe, bacteria were detected both within the tumor cells and among the surrounding stromal/infiltrating cells (Figure 4). In situ hybridization using the eubacterial probe was also applied to explore the presence of bacteria in the lesions of oral lichen planus, an inflammatory immune disease with unknown etiology. Interestingly, bacterial signals were detected not only within the epithelia but also in the lamina propria where band-like infiltration was observed. Under high magnification, the bacterial signals were detected in the nuclei of many cells (Figure 5).
Figure 1. Sensitivity test of the DIG-labeled probes. Serially diluted custom-labeled probes and a positive control probe provided in the kit were dot blotted with anti-DIG-AP-conjugated antibody. After adding the substrate, the blot with the P. gingivalis-specific probe was developed for 30 sec, while the blot with the eubacterial probe was developed for 1 min. Please click here to view a larger version of this figure.
Figure 2. Detection of bacteria within gingival tissues obtained from patients with chronic periodontitis. Sections of gingival biopsies from the healthy site (A) and the diseased site (B) of a patient with periodontitis were subjected to hematoxylin-eosin (H&E) staining or in situ hybridization with either the P. gingivalis-specific probe or the eubacterial probe. Negative controls were hybridized with the probe mixed with 10-fold excess unlabeled probe. The magnified area is indicated with a square box. Representative positive signals, shown in violet, are marked with thin arrows. Thick arrows indicate plaque biofilm outside the tissue. The plaque biofilm examined at 1,000X magnification are shown in insets. Please click here to view a larger version of this figure.
Figure 3. Detection of oral commensal bacteria within the gingival tissue of mouse. Experimental periodontitis was induced in BALB/c mice by oral inoculation of P. gingivalis (Pg) or application of DSS onto gingival mucosa. Gingival sections from mice were subjected to H&E staining or in situ hybridization with either the P. gingivalis-specific probe or the eubacterial probe. Representative positive signals, shown in violet, are marked with arrows. Original magnification is x400. Please click here to view a larger version of this figure.
Figure 4. Detection of bacteria within cancer lesion. The sections of lung biopsies from patients diagnosed with squamous cell carcinoma were stained with H&E or in situ hybridized with either the universal eubacterial probe or the negative control probe. The magnified area is indicated with a square box. Representative positive signals, shown in violet, are marked with arrows. Border of tumor cells are indicated with dotted lines. Please click here to view a larger version of this figure.
Figure 5. Detection of bacteria within the lesions of oral lichen planus. The sections of biopsy from buccal mucosa diagnosed as oral lichen planus were stained with H&E or in situ hybridized with either the universal eubacterial probe or the negative control probe. The magnified areas are indicated with a square box. Representative positive signals, shown in violet, are marked with arrows. Please click here to view a larger version of this figure.
Here a protocol to localize bacteria within paraffin-embedded tissues using a DIG-labeled DNA probe has been described. The probe targets the DNA or RNA molecules of bacterial 16S rRNA gene, and the 16S rRNA-targeting probes can be designed as either species-specific or universal. The specific hybridization of the P. gingivalis-specific probe to P. gingivalis but not to other oral bacteria has been previously shown10. In contrast, the eubacterial probe hybridized to all bacterial genomic DNA tested (17 different species), although hybridization efficiency varied12. The number of T-nucleotides within the probe determines the efficiency of DIG-labeling. Production of a DIG-labeled probe with high sensitivity is the most critical step for the successful implementation of the described protocol. Treatment of specimens with hydrochloric acid improves the signal-to-noise ratio through extraction of proteins and partial hydrolysis of target sequences. An increase in the concentration of proteinase K increases target accessibility of probes but reduces tissue preservation. Therefore, it is recommended to test several concentrations of proteinase K, depending on the types of tissue. The acetylation step decreases background binding of the negatively charged probe to the proteins of the tissue by acetylating the positively charged amino groups. After a series of these preparation steps, the tissue sections tear easily, thus, have to be handled with caution. Background is minimal compared with FISH. However, the signals from tissues with high endogenous alkaline phosphatase activity such as bones and mucus glands should be critically interpreted.
PCR-amplified DNA probes are easy to produce and stable compared to RNA probes. Immunohistochemical detection of hybridized probes allows identification of histological structures through comparison with H&E stained sections: the epithelia, connective tissue, inflammatory infiltrates, and blood vessels are well distinguished. One of the limitations of the described protocol is the inability to apply multiple probes at the same time. Additionally, the exclusion of the signals from bacterial contaminants on the surface of sections is limited.
This protocol can be adapted to detect other bacterial transcripts within tissue sections16. In addition, this protocol can be extended to double staining with immunohistochemical detection of a host cell marker.
The authors have nothing to disclose.
This study was supported by a grant (2013R1A1A3005669) from the National Research Foundation of Korea and a grant (HI13C0016) of the Korean Health Technology R&D Project, Ministry of Health & Welfare.
Acetic anhydride | Sigma | 6404 | |
50% Dextran sulfate solution | Millipore | S4030 | |
50X Denhardt’s solution | Sigma | D2532 | |
DEPC | Sigma | P159220 | |
DIG DNA labeling and detection kit | Roche | 11 093 657 910 | |
Formamide | Sigma | F9037 | |
ImmEdge™ Pen | Dako | H-400 | |
Levamisole | Vector | SP-5000 | |
Magnesium chloride | Sigma | 246964 | |
Maleic acid | Sigma | M0375 | |
Methyl green | Sigma | M6776 | |
Paraformaldehyde | Sigma | P1648 | |
Permount | Fisher | SP15-500 | |
Salmon sperm DNA solution | Invitrogen | #15632-011 | |
Sodium chloride | Sigma | S9625 | |
Sodium citrate | Duksan | D1420 | |
Sodium dodecyl sulfate | Amresco | 227 | |
Triethanolamine-HCl | Sigma | 90279 | |
Tris-HCl | Research organics | 3098T |