Summary

تحليل مخطط كهربية الشبكية من الاستجابة البصرية في الزرد اليرقات

Published: March 16, 2015
doi:

Summary

We present a method for the electroretinographic (ERG) analysis of zebrafish larvae utilizing micromanipulation and electroretinography techniques. This is a simple and straightforward method for assaying visual function of zebrafish larvae in vivo.

Abstract

في مخطط كهربية الشبكية (أرج) هي طريقة الكهربية موسع لتحديد وظيفة الشبكية. من خلال وضع إلكترود على سطح القرنية، ولدت النشاط الكهربائي في استجابة للضوء يمكن قياسها واستخدامها لتقييم نشاط الخلايا الشبكية في الجسم الحي. توضح هذه المخطوطة استخدام أرج لقياس وظيفة البصرية في الزرد. منذ فترة طويلة تستخدم الزرد كنموذج للتنمية الفقارية بسبب سهولة قمع الجينات التي أليغنوكليوتيد] morpholino والتلاعب الدوائي. في 5-10 إدارة الشرطة الاتحادية، والأقماع فقط وظيفية في شبكية العين اليرقات. ولذلك، فإن الزرد، على عكس الحيوانات الأخرى، هو نظام نموذج قوي لدراسة مخروط وظيفة البصرية في الجسم الحي. يستخدم هذا البروتوكول التخدير القياسية، والمجهرية والبروتوكولات stereomicroscopy التي هي مشتركة في المختبرات التي تقوم بإجراء البحوث الزرد. الأساليب المذكورة الاستفادة من معيار الكهربية مكافئuipment وكاميرا الإضاءة الخافتة للاسترشاد بها في وضع تسجيل مسرى مكروي على القرنية اليرقات. وأخيرا، علينا أن نظهر كيف أن يتوفر تجاريا أرج مشجعا / مسجل مصممة أصلا للاستخدام مع الفئران يمكن بسهولة أن تتكيف للاستخدام مع الزرد. أرج من الزرد اليرقات يوفر وسيلة ممتازة لمعايرة مخروط وظيفة البصرية في الحيوانات التي تم تعديلها من قبل morpholino الحقن قليل النوكليوتيد وكذلك أحدث التقنيات الهندسية الجينوم مثل الزنك فنجر Nucleases (ZFNs)، النسخ المنشط على غرار المستجيب Nucleases (TALENs)، و تتجمع بانتظام Interspaced قصيرة المتناوب يكرر (كريسبر) / Cas9، والتي زادت بشكل كبير من كفاءة وفعالية استهداف الجينات في الزرد. وبالإضافة إلى ذلك، علينا أن نستفيد من قدرة وكلاء الدوائية لاختراق اليرقات الزرد لتقييم المكونات الجزيئية التي تساهم في photoresponse. ويعرض هذا البروتوكول الإعداد التي يمكن تعديلها واستخدامها من قبل الباحثينمع أهداف التجريبية المختلفة.

Introduction

The electroretinogram (ERG) is a noninvasive electrophysiological method that has been used extensively in the clinic for determining the function of the retina in humans. The electrical activity in response to a light stimulus is measured by placing recording electrodes on the outer surface of the cornea. The characteristics of the stimulus paradigm and the response waveform define the retinal neurons contributing to the response. This method has been adapted for use with a number of animal models including mice and zebrafish. The typical vertebrate ERG response has four principal components: the a-wave, which is a cornea-negative potential derived from photoreceptor cell activity; the b-wave, a cornea-positive potential derived from the ON bipolar cells; the d-wave, a cornea-positive potential interpreted as the activity of the OFF bipolar cells; and the c-wave, which occurs several seconds after the b-wave and reflects activity in Müller glia and the retinal pigment epithelium1-4. Additional references for understanding the history and principles of ERG analysis in humans and model animals are the online textbook, Webvision, from the University of Utah and texts such as the Principles and Practice of Clinical Electrophysiology of Vision4,5.

Daniorerio (zebrafish) has long been favored as a model for vertebrate development, due to its rapid maturation and transparency, which allows for noninvasive morphological analysis of organ systems, behavioral assays and both forward and reverse genetic screens (for review, see Fadool and Dowling6). Zebrafish larvae are highly amenable to genetic and pharmacological manipulation, which, when coupled with their high fecundity, make them an excellent animal model for high-throughput biological analyses. The higher ratio of cones to rods in larval zebrafish – roughly 1:1 compared to mice (~3% cones) – make them particularly useful for the study of cone function7-9.

In the vertebrate retina, cones develop before rods10. Interestingly, zebrafish cones are operative as early as 4 dpf, allowing for selective electrophysiological analysis of cones at that stage6,11,12. In contrast, ERG responses in rods appear between 11 and 21 dpf13. Therefore, zebrafish larvae at 4-7 dpf serve functionally as an all-cone retina. However, the native photopic ERG response of 4-7 dpf larvae is dominated by the b-wave. Application of pharmacological agents, such as L-(+)-2-amino-4-phosphono-butyric acid (L-AP4), an agonist for the metabotropic glutamate (mGluR6) receptor expressed by the ON bipolar cells, effectively blocks the generation of the b-wave and reveals the isolated cone mass receptor potential, (the “a-wave”)14-17.

Here we describe a simple and reliable method for ERG analysis using commercially available ERG equipment designed for use with mice that have been adapted for use with zebrafish larvae. This system can be utilized on zebrafish larvae of varying genetic backgrounds, as well as those treated with pharmacological agents, to aid researchers in the identification of signaling pathways that contribute to visual sensitivity and light adaptation16. The experimental procedures outlined in this protocol will guide investigators in the use of ERG analysis to answer a variety of biological questions pertaining to vision, and demonstrate the construction of a flexible ERG setup.

Protocol

Animal upkeep and experimental protocols were approved by the Institutional Animal Care and Use Committees of the University of North Carolina at Chapel Hill, and meet all requirements of the NIH Office of Laboratory Animal Welfare and the Association for Assessment and Accreditation of Laboratory Animal Care International. NOTE: To obtain larvae for ERG analysis, published protocols for standard zebrafish husbandry and maintenance were employed18. Larvae are obtained through natural breeding and housed under a 14 hr light/1…

Representative Results

Typically, ERGs are recorded from zebrafish larvae at 5 dpf, since a number of studies have published ERG recordings at this stage9,16,20. Larval responses were measured under dark-adapted conditions with no background illumination using a 20 msec stimulus of white LED light. We utilized a commercially available ERG system consisting of a Ganzfeld light stimulator and computer controller/recorder. The stimulator uses a tightly controlled proprietary pulse width modulation (PWM) system to control the…

Discussion

In this protocol a simple procedure for ERG recordings of larval zebrafish is detailed. This procedure allows for a quick and comprehensive assay of visual function.There are several critical steps throughout the procedure that should be kept in mind. The zebrafish larvae should be healthy before the experiment to prevent death during potential drug treatments and ensure prolonged livelihood during the ERG recordings. In addition, it is important that the larvae utilized in experiments are closely age-matched. This is du…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank members of the UNC Zebrafish Aquaculture facility for maintenance of the zebrafish. We would also like to thank Diagnosys, LLC for assistance with the setup of the ERG apparatus. Additional thanks go to Dr. Portia McCoy and the laboratory of Dr. Ben Philpot for assistance with electrophysiological methods. We also wish to thank Lizzy Griffiths for her illustration of a larval zebrafish. This work was supported by National Institutes of Health awards F32 EY022279 (to J.D.C) and R21 EY019758 (to E.R.W).

Materials

Name of the Material/Equipment Company Catalog Number Comments/ Description (optional)
Faraday cage 80/20 Inc custom Custom designed aluminum "Industrial Erector Set" for Cage framework
PVA sponge Amazon B000ZOWG1C Provides a soft, moist platform for placement of zebrafish larvae
150 ml Sterile Filter systems Corning 431154 Filtering solutions to prevent small articulates from blocking micropipettes
Espion E2 Diagnosys, LLC contact Modular electrophysiology system capable of generating visual stimuli for any stimulator and digital recording and analysis of responses using propietary software, more information at http://www.diagnosysllc.com
Colordome Diagnosys, LLC contact Light stimulator with RGB LED and Xenon light sources for Ganzfeld ERG, more information at http://www.diagnosysllc.com
Micromanipulator Drummond 3-000-024-R Holding and positioning the recording microelectrode
Magnetic ring stand Drummond 3-000-025-MB Holding and positioning of the camera and refrence electrode
Lead extensions Grass Technologies F-LX Spare female to male 1.5 mm lead cables for connecting electrodes
Male Pin to Female SAFELEAD Adaptor Grass Technologies DF-215/10 Connecting 2 mm pins to 1.5 headboard pins
Window screen frame (metal) and spline Lowes or Home Depot various For attaching copper mesh to Faraday cage framework
Steriflip 50 ml filters Millipore SCGP00525 Filtering solutions to prevent small articulates from blocking micropipettes
BNC adaptor Monoprice 4127 Connecting camera to BNC cable
BNC cable Monoprice 626 Connecting camera to video adaptor
Camera lens Navitar 1582232 Visualizing the positioning of the recording microelectrode onto the larval cornea
Camera coupler Navitar 1501149 Visualizing the positioning of the recording microelectrode onto the larval cornea
Luna BNC to VGA + HDMI Converter Sewell SW-29297-PRO BNC to VGA adaptor allowing camera image to project on computer monitor
APB Sigma A1910 mGluR6 agonist, blocks b-wave allowing analysis of the isolated cone mass receptor potential
Borosilicate glass Sutter BF-150-86-10 Fire- polished borosilicate glass (metling temperature = 821°C) with filament and dimensions of 1.5mm x 0.86 mm (outer diameter by inner diameter) 
P97 Flaming/Brown puller Sutter P97 For pulling glass micropipettes
Sorbothane sheet Thorlabs SB12A Synthetic viscoelastic urethane polymer, placed under Passive Isolation Mounts and ERG platform to absorb shock and prevent slipping, can be cut to size
Breadboard Thorlabs B2436F Vibration isolation platfrom for ERG stimulator and zebrafish specimen
Passive Isolation Mounts Thorlabs PWA074 Provides vibration isolation to breadboard
Copper mesh TWP 022X022C0150W36T To line Faraday Cage
Pipette pump VWR 53502-233 Used with Pasteur pipettes to carefully transfer zebrafish larvae
Pasteur pipettes VWR 14672-608 Used with Pipette pump to carefully transfer zebrafish larvae
Camera Watec WAT-902B Visualizing the positioning of the recording microelectrode onto the larval cornea
Tricaine (MS-222) Western Chemical Tricaine-S Pharmaceutical-grade anesthetic,
Micro-fil WPI MF28G-5 Filling microelectrode holder and microelectrode glass
Microelectrode holder WPI MEH2SW15 Holds glass microelectrode, connects to ERG equipment
Reference Electrode WPI DRIREF-5SH Carefully break off last centimeter of casing to drain electrolyte and expose sintered Ag/AgCl pellet electrode
Reference Electrode (alternative) WPI EP1 Alternative to DRIREF-5SH. Ag/AgCl electrode that must be wired/soldered to connecting lead
Low-noise cable for Microelectrode holder WPI 13620 Connecting recording microelctrode holder to adaptor/headboard

References

  1. Dowling, J. E. . The retina: an approachable part of the brain. , (1987).
  2. Makhankov, Y. V., Rinner, O., Neuhauss, S. C. An inexpensive device for non-invasive electroretinography in small aquatic vertebrates. J Neurosci. Methods. 135, 205-210 (2004).
  3. Wu, J., Peachey, N. S., Marmorstein, A. D. Light-evoked responses of the mouse retinal pigment epithelium. J Neurophysiol. 91, 1134-1142 (2004).
  4. Heckenlively, J. R., Arden, G. B. . Principles and Practice of Clinical Electrophysiology of Vision. , (2006).
  5. Perlman, I., Kolb, H., Nelson, R., Fernandez, E., Jones, B. . Webvision: The Organization of the Retina and Visual System. , (1995).
  6. Fadool, J. M., Dowling, J. E. Zebrafish: a model system for the study of eye genetics. ProgRetin. Eye Res. 27, 89-110 (2008).
  7. Doerre, G., Malicki, J. Genetic analysis of photoreceptor cell development in the zebrafish retina. Mech. Dev. 110, 125-138 (2002).
  8. Brockerhoff, S. E., et al. Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof. J Neurosci. 23, 470-480 (2003).
  9. Rinner, O., Makhankov, Y. V., Biehlmaier, O., Neuhauss, S. C. Knockdown of cone-specific kinase GRK7 in larval zebrafish leads to impaired cone response recovery and delayed dark adaptation. Neuron. 47, 231-242 (2005).
  10. Harada, T., Harada, C., Parada, L. F. Molecular regulation of visual system development: more than meets the eye. Genes Dev. 21, 367-378 (2007).
  11. Branchek, T. The development of photoreceptors in the zebrafish, brachydaniorerio. II. Function. J Comp Neurol. 224, 116-122 (1984).
  12. Schmitt, E. A., Dowling, J. E. Early retinal development in the zebrafish, Daniorerio: light and electron microscopic analyses. J Comp Neurol. 404, 515-536 (1999).
  13. Bilotta, J., Saszik, S., Sutherland, S. E. Rod contributions to the electroretinogram of the dark-adapted developing zebrafish. Dev Dyn. 222, 564-570 (2001).
  14. Wong, K. Y., Adolph, A. R., Dowling, J. E. Retinal bipolar cell input mechanisms in giant danio. I. Electroretinographic analysis. J Neurophysiol. 93, 84-93 (2005).
  15. Nelson, R. F., Singla, N. A spectral model for signal elements isolated from zebrafish photopicelectroretinogram. Vis Neurosci. 26, 349-363 (2009).
  16. Korenbrot, J. I., Mehta, M., Tserentsoodol, N., Postlethwait, J. H., Rebrik, T. I. EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors. J Neurosci. 33, 17763-17776 (2013).
  17. Gurevich, L., Slaughter, M. M. Comparison of the waveforms of the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res. 33, 2431-2435 (1993).
  18. Westerfield, M. . The Zebrafish Book: A guide for the laboratory use of zebrafish (Daniorerio). , (2007).
  19. Kim, D. Y., Jung, C. S. Gap junction contributions to the goldfish electroretinogram at the photopic illumination level. Korean J PhysiolPharmacol. 16, 219-224 (2012).
  20. Brockerhoff, S. E., Dowling, J. E., Hurley, J. B. Zebrafish retinal mutants. Vision Res. 38, 1335-1339 (1998).
  21. Naka, K. I., Rushton, W. A. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol. 185, 536-555 (1966).
  22. Naka, K. I., Rushton, W. A. S-potentials from luminosity units in the retina of fish (Cyprinidae). J Physiol. 185, 587-599 (1966).
  23. Shao, X. M., Feldman, J. L. Micro-agar salt bridge in patch-clamp electrode holder stabilizes electrode potentials. J Neurosci. Methods. 159, 108-115 (2007).
  24. Brockerhoff, S. E., et al. A behavioral screen for isolating zebrafish mutants with visual system defects. ProcNatlAcadSci. U S A. 92, 10545-10549 (1995).
  25. Fleisch, V. C., Jametti, T., Neuhauss, S. C. Electroretinogram (ERG) Measurements in Larval Zebrafish. CSH protocols. , (2008).
  26. Seeliger, M. W., Rilk, A., Neuhauss, S. C. Ganzfeld ERG in zebrafish larvae. Doc Ophthalmol. 104, 57-68 (2002).
  27. Kainz, P. M., Adolph, A. R., Wong, K. Y., Dowling, J. E. Lazy eyes zebrafish mutation affects Müller glial cells, compromising photoreceptor function and causing partial blindness. J Comp Neurol. 463, 265-280 (2003).
  28. Lewis, A., et al. Celsr3 is required for normal development of GABA circuits in the inner retina. PLoS. genetics. 7, e1002239 (2011).
check_url/cn/52662?article_type=t

Play Video

Cite This Article
Chrispell, J. D., Rebrik, T. I., Weiss, E. R. Electroretinogram Analysis of the Visual Response in Zebrafish Larvae. J. Vis. Exp. (97), e52662, doi:10.3791/52662 (2015).

View Video