Methods for mapping in vivo protein-DNA interactions are becoming crucial for every aspect of genomic research but they are laborious, costly, and time consuming. Here a commercially available robotic liquid handling system that automates chromatin immunoprecipitation for mapping in vivo protein-DNA interactions with limited amounts of cells is presented.
Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a technique of choice for studying protein-DNA interactions. ChIP-seq has been used for mapping protein-DNA interactions and allocating histones modifications. The procedure is tedious and time consuming, and one of the major limitations is the requirement for high amounts of starting material, usually millions of cells. Automation of chromatin immunoprecipitation assays is possible when the procedure is based on the use of magnetic beads. Successful automated protocols of chromatin immunoprecipitation and library preparation have been specifically designed on a commercially available robotic liquid handling system dedicated mainly to automate epigenetic assays. First, validation of automated ChIP-seq assays using antibodies directed against various histone modifications was shown, followed by optimization of the automated protocols to perform chromatin immunoprecipitation and library preparation starting with low cell numbers. The goal of these experiments is to provide a valuable tool for future epigenetic analysis of specific cell types, sub-populations, and biopsy samples.
Como Next-Generation Sequencing (NGS) tecnologias se tornaram comuns e mais acessível, o principal método para o mapeamento de todo o genoma de interações proteína-ADN agora é imunoprecipitação de cromatina seguida de detecção NGS (CHIP-seq), que permite a descoberta do fator de transcrição sites ou padrões de modificações de histonas vinculativo. ChIP-seq é vantajosa no fornecimento de dados de alto rendimento de todo o genoma que pode ser utilizado para análise quantitativa e qualitativa das interacções proteína-ADN pela medição dos fragmentos de ADN enriquecidos. No entanto, existem algumas desvantagens em experiências ChIP-seq padrão, tais como a dificuldade de obter material suficiente para criar uma biblioteca de sequenciação.
ChIP experiências são divididos em seis passos básicos incluindo as regiões de ligação 1) reticulação de ADN-proteína 2) preparação da amostra que inclui a lise celular e corte a cromatina por sonicação, 3) a formação de imunocomplexos,4) precipitação dos imunocomplexos, 5) lavagem dos imunocomplexos, e 6) eluição do material enriquecido e análise por qPCR e NGS.
O sucesso de um ensaio de chip é dependente de três factores principais: uma boa preparação de cromatina, a quantidade de antigénio na amostra original, e a especificidade e afinidade do anticorpo para o seu antigénio cognato. Uma das principais limitações é a necessidade de quantidades elevadas a partir de números de células, a fim de se obter suficiente ADN enriquecido para criar uma biblioteca de sequenciação. Para os cientistas que trabalham com quantidades de amostras limitadas, como amostras de biópsia ou sub-populações de células, experimentos chip-seq são muito desafiador. Estudos recentes têm mostrado que os ensaios de ChIP-seq pode ser realizada quando se trabalha com uma baixa quantidade de células de 1, 2. Diagenode desenvolveu um sistema de manipulação robótica líquido que pode automatizar completamente as experiências ChIP-seq quando começando com um número limitado de células.
Automation fornecemuitas vantagens sobre a preparação manual de amostras de chip-seq, uma vez que diminui o erro humano, reduz a variabilidade, e reduz o custo experimental. Protocolos semi-automatizados para imunoprecipitação da cromatina e preparação biblioteca foram relatados, mas nenhum desses estudos tem mostrado dados ao usar números de celulares de baixo 3, 4, 5, 6.
Neste trabalho um fluxo de trabalho automatizado completo é descrito tanto para imunoprecipitação e preparação biblioteca ensaios de cromatina em um sistema de tratamento de líquido robótica que utiliza tecnologia baseada em grânulo magnético e que pode resolver vários parâmetros na otimização de protocolo. Aqui, experimentos chip seq automatizados foram realizados com sucesso em um número limitado de células com o objetivo de simplificar, padronizar e fornecendo uma solução confiável para estudar perfis epigenéticos em populações de células pequenas. O protocolo ChIP automatizado descrito neste trabalho foi otimizado em células HeLa utilizando anticorpos específicos de histonas e reagentes but o fluxo de trabalho pode ser adaptado para outras linhas de células e anticorpos com optimização experimental correspondente.
Immunoprecipitation cromatina seguida de seqüenciamento é agora um procedimento padrão. Aqui um protocolo ChIP-seq automatizado que pode gerar perfis epigenética cromatina com tão poucos como 10.000 células de material de partida é apresentado.
Automatizando chip e preparação biblioteca ensaios permite padronizar o procedimento de otimização chip e reduzir a variabilidade experimental. O sistema de manuseio de líquidos aqui apresentada elimina muitos dos procedimentos manuais associadas com o chip reduzindo as mãos no tempo para apenas 30 min, minimiza a perda de amostra, e permite que precisa ChIP-seq com apenas alguns picogramas de entrada da biblioteca. A fim de realizar experimentos chip-seq automatizados de sucesso, é também crucial para usar preparações cromatina cortados alta qualidade e anticorpos da classe de chip seq em cada experimento O sistema utiliza tecnologia baseada em grânulo magnético e oferece flexibilidade para mudar principais parâmetros experimentais, tais como incubação tempo para o revestimento de anticorpoing e as etapas de imunoprecipitação ou modificação das condições de lavagem, permitindo que o pesquisador para realizar todas as experiências necessárias para a otimização ChIP-seq. O sistema automatizado é uma plataforma de "aberto", que também permite a comparação de vários reagentes em paralelo para a optimização das condições experimentais de cada linha celular individual e anticorpo e permite uma comparação directa de diferentes tipos e concentrações de cromatina, anticorpos diferentes e mesmo diferentes tipos de magnético grânulos.
Uma das limitações do sistema automatizado é a necessidade de automatizar todos os protocolos em volumes que variam de 5 ul a 200 ul. Contudo, a miniaturização dos experimentos nesta plataforma automatizada também permite poupar custos em reagentes.
Em adição com os protocolos descritos no presente estudo, o sistema também é adaptável e automatiza uma variedade de outras aplicações baseadas grânulo magnético, tais como uma imunoprecipitaçãond captura de DNA metilado (tecnologias MEDIP e MethylCap), imunoprecipitação de DNA hydroxylmethylated (hMEDIP), cromatina imunoprecipitação sequencial (ReChIP), immunoprecipitation RNA (RNA-IP), conversão de bissulfito, e ensaios de purificação de DNA.
The authors have nothing to disclose.
This work was supported by the BLUERPINT EU grant (BLUEPRINT – A BLUEPRINT of Haematopoietic Epigenomes). We also thank the Walloon Region (DG06) for its financial support.
Product Description | Company | Catalogue number | Comments |
PBS | Life technologies | 14190-094 | |
Trypsin-EDTA | Sigma | T3924-100ML | |
Formaldehyde 37% | Sigma | F8775-25 | |
1,25M Glycine Solution | Diagenode | C01020010 | Component of the ideal ChIP-seq kit |
Lysis Buffer iL1 | Diagenode | C01020010 | Component of the ideal ChIP-seq kit |
Lysis Buffer iL2 | Diagenode | C01020010 | Component of the ideal ChIP-seq kit |
Shearing Buffer iS1 | Diagenode | C01020010 | Component of the ideal ChIP-seq kit |
Protease Inhibitors Mix (200x) | Diagenode | C01010130 | Component of the Auto True Micro ChIP kit |
HBSS (no calcium, no magnesium, no phenol red) | Life technologies | 14175-053 | |
Lysis Buffer tL1 | Diagenode | C01010130 | Component of the Auto True Micro ChIP kit |
ChIP Buffer tC1 | Diagenode | C01010130 | Component of the Auto True Micro ChIP kit |
ideal ChIP-seq kit | Diagneode | C01010051 | |
ChIP-Buffer H | Diagenode | C01010020 | Component of the Auto Histone ChIP-seq kit |
Auto Histone ChIP-seq kit | Diagenode | C01010020 | |
Auto True Micro ChIP kit | Diagenode | C01010130 | |
H3K79me3 polyclonal antibody-Classic | Diagenode | C15310068 | |
H3K27me3 polyclonal antibody-Classic | Diagenode | C15410069 | |
H3K4me3 polyclonal antibody-Classic | Diagenode | C15410030 | |
H3K4me2 polyclonal antibody-Classic | Diagenode | C15410035 | |
H3K9ac polyclonal antibody-Premium | Diagenode | C15410004 | |
H3K9/14ac polyclonal antibody-Premium | Diagenode | C15410200 | |
H3K36me3 polyclonal antibody-Premium | Diagenode | C15410058 | |
H3K9me3 polyclonal antibody-Premium | Diagenode | C15410193 | |
Rabbit IgG | Diagenode | C15410206 | |
Protein-A coated paramagnetic beads | Diagenode | C01010020 | |
Auto IPure | Diagenode | C03010010 | |
MicroChIP DiaPure columns | Diagenode | C03040001 | |
Universal SyberGreenMaster Mix 1.25ml | Diagenode | DMMLD2D100 | |
Quant-IT dsDNA | Invitrogen | Q32854 | |
Illumina Sample Preparation kit fro Genomic DNA | Illumina | FC-121-3001 | |
Illumina True-seq kit ChIP library Prep kit | Illumina | IP-202-1012 | |
MicroPlex Library Preparation Kit | Diagenode | C05010010 | |
Agencourt AMPure XP beads | Beckman Coulter | A63881 | |
Illumina Library prep Quantification kit | Kapa Biosystems | KK4844 | |
IP-Star Compact Automated System | Diagenode | B03000002 | |
Bioruptor Plus | Diagenode | B01020001 | |
Bioruptor Pico | Diagenode | B01060001 | |
Qubit system | Invitrogen | Q32857 | |
Illumina Hiseq systems | Illumina |