We describe a protocol for in vivo labeling of olfactory sensory neurons by electroporation and subsequent confocal laser-scanning or multiphoton microscopy to visualize neuronal morphology and its development over time.
The olfactory system has the unusual capacity to generate new neurons throughout the lifetime of an organism. Olfactory stem cells in the basal portion of the olfactory epithelium continuously give rise to new sensory neurons that extend their axons into the olfactory bulb, where they face the challenge to integrate into existing circuitry. Because of this particular feature, the olfactory system represents a unique opportunity to monitor axonal wiring and guidance, and to investigate synapse formation. Here we describe a procedure for in vivo labeling of sensory neurons and subsequent visualization of axons in the olfactory system of larvae of the amphibian Xenopus laevis. To stain sensory neurons in the olfactory organ we adopt the electroporation technique. In vivo electroporation is an established technique for delivering fluorophore-coupled dextrans or other macromolecules into living cells. Stained sensory neurons and their axonal processes can then be monitored in the living animal either using confocal laser-scanning or multiphoton microscopy. By reducing the number of labeled cells to few or single cells per animal, single axons can be tracked into the olfactory bulb and their morphological changes can be monitored over weeks by conducting series of in vivo time lapse imaging experiments. While the described protocol exemplifies the labeling and monitoring of olfactory sensory neurons, it can also be adopted to other cell types within the olfactory and other systems.
The lifelong turnover of sensory neurons distinguishes the olfactory system from many other sensory and neuronal systems1,2. Newly formed sensory neurons are continuously generated in the basal portion of the olfactory epithelium3 and extend their axons into the olfactory bulb, the first relay station of the olfactory system4. However, the cellular and molecular mechanisms controlling the formation and maintenance of the olfactory map are far from being fully understood4,5.
Here, we describe a protocol for labeling sensory neurons of the olfactory organ of larval X. laevis by in vivo electroporation of fluorophore-coupled dextrans. The presented protocol allows visualization of axonal morphology and connectivity, track axonal development over time and study mechanisms regulating axonal wiring and guidance.
Electroporation is a well established method to introduce charged macromolecules, like dextran-coupled dyes and DNA, into cells6,7. The cell membrane is permeabilized by application of short voltage pulses and the molecules are electrophoretically delivered into the cytosol8. Spatially restricted electroporation using a micropipette permits selective labeling of cells including neurons and has been applied in various neuronal systems including the visual system of X. laevis9,10.
We show how the electroporated animals can be used to study axonal growth patterns and morphology in living animals using confocal laser-scanning or multiphoton microscopy. The described procedure allows identifying the coarse topology of axonal projections of sensory neurons of the main and accessory olfactory system11,12. Using in vivo time lapse imaging, it is also suitable to supervise the glomerular connections of single mature sensory neurons, and to monitor the evolution of the axonal projection patterns of immature sensory neurons12. The described protocol can be applied to investigate the structure and formation of olfactory circuits in the intact animal and can be adapted to other cell types within the olfactory and other neuronal systems.
这里描述的实验步骤,允许幼虫X的嗅觉器官的标记的感觉神经元蟾通过的荧光团偶联的葡聚糖和随后的感觉轴突生长在活体动物可视电穿孔。通过改变在体内电穿孔的参数,可以控制标记的感觉神经元的数目。由此,能够以标记大基团的感觉上皮,很少或甚至单个细胞的神经元。
以确保所希望的延长神经元标记的是特别谨慎微量特性和电穿孔脉冲是重要的。更高的吸移管的电阻和减小的电压脉冲的幅度,持续时间,重复次数可以减少标记的细胞的量,而降低吸移管的电阻和较高的电压脉冲的幅度,持续时间和脉冲数可以导致更广泛的标签。日E使用荧光葡聚糖的电,如果提供的应用设置相应的即时视觉反馈。但要注意使用的幅度,持续时间和超过协议中提供的值可能会导致细胞损伤,甚至细胞死亡17脉冲数参数。微量的堵塞或破裂的提示也可以阻碍成功的电穿孔。
在X的嗅觉器官活体电穿孔蟾仅限于幼虫期以来postmetamorphotic青蛙的皮肤是强硬的,不能很容易地穿透用微量。 在体内的可视化神经元突起可通过的激发/发射光在更深的脑区域或通过血管的散射受到阻碍。这个问题在更高的幼虫阶段尤为明显,由于较大的大脑,并可能导致使明确的识别细微的轴突过程的更困难的噪声信号。
<p类=“jove_content”>所提出的协议允许以可视化的完整的嗅觉系统的感觉神经元,而不解剖动物,标签的过程中损坏的细胞,制备组织切片或根据需要可替代的方法固定组织,如在全细胞膜片标签-clamp实验18。当组合几个或单个的感觉神经元在体内的时间推移成像的标记,能够以可视化单个成熟的感觉神经元的肾小球连接在较长的时间间隔。这种方式还能够监测未成熟的感觉神经元的轴突突起图形的发展在几个星期。这后一种选择是特别有趣,因为它允许监视单个轴突的生长模式,在活的动物。这将打开以调查控制轴突导向和寻路细胞和分子机制的可能性。几个因素,包括气味受体表达,各种轴突ñ导向分子和感觉神经元的加臭剂诱导的/自发性活动已显示调节的感觉神经元的轴突4,5-目标的发现。该协议的应用不限于嗅觉的感觉神经元,但也可应用于研究其他类型的细胞, 例如 。,茎发育的大脑或嗅球的僧帽细胞的神经区域的细胞/祖细胞。此外,表现出技术也可以结合使用钙敏感葡聚糖或注入膜透钙染料来获得关于标记的神经元和/或所连接的电路7,19的功能信息。的大范围的荧光团耦合到葡聚糖的可用性允许多个单个细胞或群体具有不同颜色的标签。还质粒DNA溶液,用于荧光蛋白例如编码,适合于电穿孔,并可以进一步提高versatili一节和技术6的有用性。该协议可以进一步增强,使得葡聚糖和DNA或带电吗啉的组合电操纵基因表达13,17。
所描述的方法,当然代表了一种新的工具,调查复杂,但仍不能完全理解的过程,调节脊椎动物的嗅觉系统轴突的指导。
The authors have nothing to disclose.
This work was supported by DFG Schwerpunktprogramm 1392 (project MA 4113/2-2), cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (project B1-9), and the German Ministry of Research and Education (BMBF; project 1364480).
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
SZX16 | Olympus | stereomicroscope with fluorescent illumination | |
Axon Axoporator 800A | Molecular Devices | single cell electroporator | |
ELP-01D | npi electronic | electroporator | |
MMJ | Märzhäuser Wetzlar | manual micromanipulator | |
P-1000 | Sutter | Horizontal micropipette puller | |
G150F-4 | Warner Instruments | glass capillaries for electroporation pipette fabrication; internal filament makes backfilling easier | |
Alexa 488-dextran 10kD | Life Technologies | D22910 | |
Alexa 546-dextran 10kD | Life Technologies | D22911 | |
Alexa 568-dextran 10kD | Life Technologies | D22912 | |
Alexa 594-dextran 10kD | Life Technologies | D22913 | |
TMR-dextran 3kD (micro-Ruby) | Life Technologies | D7162 | |
microloader pipette tips | eppendorf | 930001007 | |
tricaine (Ethyl 3-aminobenzoate methanesulfonate) | Sigma-Aldrich | E10521 | anesthetic; use gloves |
A1-MP | Nikon | multiphoton microscope | |
LSM 780 | Zeiss | confocal microscope | |
Imaris | Bitplane | alternative software for neuronal tracing |