Summary

尾部皮肤来研究异基因CD4 + T细胞应答的小鼠移植

Published: July 25, 2014
doi:

Summary

Tail-skin transplantation is a powerful model for studying T cell-dependent rejection and tolerance induction during allogeneic immune responses in mice. The advantages of this protocol are minor invasive surgery, and ease of monitoring with no need to sacrifice the recipient mouse.

Abstract

The study of T cell responses and their consequences during allo-antigen recognition requires a model that enables one to distinguish between donor and host T cells, to easily monitor the graft, and to adapt the system in order to answer different immunological questions. Medawar and colleagues established allogeneic tail-skin transplantation in mice in 1955. Since then, the skin transplantation model has been continuously modified and adapted to answer specific questions. The use of tail-skin renders this model easy to score for graft rejection, requires neither extensive preparation nor deep anesthesia, is applicable to animals of all genetic background, discourages ischemic necrosis, and permits chemical and biological intervention.

In general, both CD4+ and CD8+ allogeneic T cells are responsible for the rejection of allografts since they recognize mismatched major histocompatibility antigens from different mouse strains. Several models have been described for activating allogeneic T cells in skin-transplanted mice. The identification of major histocompatibility complex (MHC) class I and II molecules in different mouse strains including C57BL/6 mice was an important step toward understanding and studying T cell-mediated alloresponses. In the tail-skin transplantation model described here, a three-point mutation (I-Abm12) in the antigen-presenting groove of the MHC-class II (I-Ab) molecule is sufficient to induce strong allogeneic CD4+ T cell activation in C57BL/6 mice. Skin grafts from I-Abm12 mice on C57BL/6 mice are rejected within 12-15 days, while syngeneic grafts are accepted for up to 100 days. The absence of T cells (CD3-/- and Rag2-/- mice) allows skin graft acceptance up to 100 days, which can be overcome by transferring 2 x 104 wild type or transgenic T cells. Adoptively transferred T cells proliferate and produce IFN-γ in I-Abm12-transplanted Rag2-/- mice.

Introduction

固体器官,如皮肤,心脏和肾脏移植是目前在全世界的医疗实践1的标准程序。成功移植的器官可以通过激活受体的免疫系统,其中确认捐助的主要组织相容性抗原被拒绝。因此移植的患者需要使用免疫抑制药物治疗2。异体皮移植在小鼠体内建立了梅达沃和他的同事于1955年,是识别后世誉为主要组织相容性复合体(MHC)I类和II目标分子的帮助。从那以后,皮肤移植模型得到了不断的修改和调整,研究T细胞亚群的作用和抑制移植排斥2-4化学和生物干预的相关性。从耳朵和躯干的皮肤都比较困难的准备,而且更容易受到缺氧和坏死较尾皮5;然而,移植过程是类似的。在另外的尾部皮肤移植物的监测是很容易由于皮肤的特征头发纹理。

本文提供的详细步骤MHC II类错配尾部皮肤移植,允许的CD4 + T细胞介导的移植排斥反应和耐受小鼠不同方面的研究。在MHC II类分子IA b将天然三点突变(称为IA BM12)6-9是足以引起排斥反应的皮肤移植物在C57BL / 6小鼠8。在IA BM12分子激活CD4 + T细胞与各种αβT细胞受体(TCR)从C57BL / 6小鼠链,其中Vα2Vβ8-TCR特异性T细胞,以产生一个TCR转基因小鼠10识别。 Vα2Vβ8-TCR特异性T细胞的过继转移已被用于建立一个排斥模型在免疫缺陷C57BL / 6的Rag2 – / –移植与IA BM12皮肤老鼠。

捐赠者和接受者之间的基因差异影响移植接受和拒绝的结果。有不同类型的移植:自体移植是从接收者个人自身移植; syngrafts和移植物分别从基因上相同和基因无关个体移植。不同的异体器官移植的接受已经证明了患者和小鼠模型11,3,4化学和生物干预。在一个基本的方法,抗-CD3抗体处理的C57BL / 6小鼠表现出IA BM12尾部皮肤(未发表数据),生存期延长。 CD4 +和CD8 + T细胞移植受体小鼠前的枯竭导致接受MHC I类和II不匹配的移植(修订版12)。有趣的是,抑制皮肤移植取决于CD4 +的存在</sup> T细胞(版本12)。在此模型中,通过阻断共刺激分子的抗体或抑制与调节性T细胞靶向不同的免疫细胞之间的特异性相互作用可能诱导耐受(未发表数据)。事实上,无论阻断CD40和CD28分子导致了长期的皮肤移植耐受13,14。

相比于其它器官的移植尾部皮肤移植容易进行并易于监测。此外,尾部皮肤移植很容易准备,而且不太容易受到缺血较其他皮肤组织。而相比之下,注射麻醉剂,移植过程中使用麻醉气体(异氟烷)的缩短两者的程序和收件人的恢复时间。尾部皮肤移植,这可能会导致不完全的伤口愈合,移植物排斥的卷曲,可以防止通过应用组织粘合剂。此外,IA BM12尾部皮肤移植模型的专门激活的CD4 <sup> + T细胞(相同遗传背景)两个免疫和免疫缺陷小鼠促进结果的解释。

本协议描述了一个可靠,重现性好,易于监控的小鼠模型,允许化学和生物干预。该模型的目的是调查排斥和耐受诱导的尾部皮肤移植手术。

Protocol

在这个视频发布和协议,所有动物的程序按照批准由州局巴塞尔城市州,瑞士动物的协议进行的。执行在无菌条件下尽可能的所有程序。 外科1。准备高压灭菌所有的手术器械,使用前纱布。 热保暖垫,并组织手术器械上的表 (表材料/方法 )。 打开手指带绷带。应用凡士林的伤口垫用棉签(确保纱布完全覆盖)。 称取?…

Representative Results

在第一种方法中的C57BL / 6小鼠移植IA BM12同种异体移植物和IA b syngrafts。拆除绷带后,移植物伤口愈合的迹象明显没有在C57BL / 6小鼠( 图1A)的接触带的闭合。拆除绷带后,CD4 + T细胞介导的炎症导致的坏死区域的外观(红点)和内移植( 图1B-C,实心)后13天C57BL / 6小鼠抑制IA BM12移植,而syngrafts被容忍长达100天( 图1B-C,空心符…

Discussion

皮肤移植是一种广泛使用的方法为研究抑制和容忍依赖于T细胞。自成立以来的皮肤移植模型中,几个修改和变化都得到了应用。在描述的过程中,使用麻醉气体(异氟烷)进行IA BM12尾部皮肤移植。使用气体麻醉的降低执行和小鼠恢复,从而减少了应力对移植小鼠的时间。该程序使用组织粘合剂来固定尾部皮肤,这容易卷曲超过耳或背皮肤组织。此外,它弄平切割和修整的边缘,因为这降…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by SNF grants PPOOA-_119204 and PPOOP3_144918 to S.W.R. We thank E. Palmer and B.T.H. Hausmann for mice and technical expertise.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Betadine Standard solution Mundipharma
Cotton swab Carl Roth GmbH 31025060
Dafalgan , UPSA Bristol Myers Squibb SA
Hansaplast Finger Strips Beierdorf AG REF.76861
Histoacryl Tissue adhesive Braun REF.1050052
Leukotape classic , 2cm x 10 m BSN Medical SAS REF.02204-00
PBS, Phosphate-Buffered Saline, pH 7.4 Invitrogen 10010015 GIBCO
Sterile gauze, 5 x 5cm, 8ply MaiMed GmbH 21010
Surgical instruments  FST 11003-12 Narrow pattern forceps, 
14095-11 Fine iris scissor curved,
14094-11 Fine iris scissor 
14010-15 Mayo scissors,
14080-11 Artery scissors ball tip 11.5 cm 
11021-14 Tissue forceps
Surgical Blade No.20 Swann-Morton LTD 3006 Carbon Steel
Surgical blade Handles Swann-Morton LTD
Syringe, 1ml ARTSANA disposable
Temgesic , Buprenorphine ESSEX Chemie AG 0.3mg/ml
Tissue Culture dishes 10 cm, 60.1 cm2 TPP
Vaseline Vifor SA
Warm pad Solis Type 223

References

  1. Mahillo, B., Carmona, M., Álvarez, M., White, S., Noel, L., Matesanz, R. Global Data in Organ Donation and Transplantation. transplantation. 92 (10), 1069-1074 (2011).
  2. Halleck, F., et al. New perspectives of immunosuppression. Transplantation proceedings. 45 (3), 1224-1231 (2013).
  3. Wood, K. J., Bushell, A., Jones, N. D. Immunologic unresponsiveness to alloantigen in vivo. a role for regulatory T cells. Immunological reviews. 241 (1), 119-132 (2011).
  4. Sykes, M. Immune tolerance: mechanisms and application in clinical transplantation. Journal of Internal Medicine. 262 (3), 288-310 (2007).
  5. McFarland, H. I., Rosenberg, A. S. Skin allograft rejection.. Current protocols in immunology. , (2009).
  6. McKenzie, I. F., Morgan, G. M., Sandrin, M. S., Michaelides, M. M., Melvold, R. W., Kohn, H. I. B6.C-H-2bm12. A new H-2 mutation in the I region in the mouse. The Journal of experimental medicine. 150 (6), 1323-1338 (1979).
  7. McIntyre, K. R., Seidman, J. G. Nucleotide sequence of mutant I-A beta bm12 gene is evidence for genetic exchange between mouse immune response genes. Nature. 308 (5959), 551-553 (1984).
  8. Stuart, P. M., Beck-Maier, B., Melvold, R. W. Provocation of skin graft rejection across murine class II differences by non–bone-marrow-derived cells. Transplantation. 37 (4), 393-396 (1984).
  9. Hausmann, B., Palmer, E. Positive selection through a motif in the alphabeta T cell receptor. Science. 281 (5378), 835-838 (1998).
  10. Bill, J., Ronchese, F., Germain, R. N., Palmer, E. The contribution of mutant amino acids to alloantigenicity. The Journal of experimental medicine. 170 (3), (1989).
  11. Monaco, A. P. Immunosuppression and tolerance for clinical organ allografts. Current Opinion in Immunology. 1 (6), 1174-1177 (1989).
  12. Rosenberg, A. S., Singer, A. Cellular basis of skin allograft rejection: an in vivo model of immune-mediated tissue destruction. Annual Review of Immunology. 10, 333-358 (1992).
  13. Kingsley, C. I., Nadig, S. N., Wood, K. J. Transplantation tolerance: lessons from experimental rodent models. Transplant international : official journal of the European Society for Organ Transplantation. 20 (10), 828-841 (2007).
  14. Larsen, C. P., et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature. 381 (6581), 434-438 (1996).
  15. Tomura, M., Nakatani, I., Murachi, M., Tai, X. G., Toyo-oka, K., Fujiwara, H. Suppression of allograft responses induced by interleukin-6, which selectively modulates interferon-gamma but not interleukin-2 production. Transplantation. 64 (5), 757-763 (1997).
  16. Ring, G. H., et al. Interferon-gamma is necessary for initiating the acute rejection of major histocompatibility complex class II-disparate skin allografts. Transplantation. 67 (10), 1362-1365 (1999).
  17. Rosenberg, A. S., Finbloom, D. S., Maniero, T. G., Vander Meide, P. H., Singer, A. Specific prolongation of MHC class II disparate skin allografts by in vivo administration of anti-IFN-gamma monoclonal antibody. Journal of immunology. 144 (12), 4648-4650 (1950).
  18. Goes, N., Sims, T., Urmson, J., Vincent, D., Ramassar, V., Halloran, P. F. Disturbed MHC regulation in the IFN-gamma knockout mouse. Evidence for three states of MHC expression with distinct roles for IFN-gamma. Journal of immunology. 155 (10), 4559-4566 (1995).
  19. Surquin, M., et al. IL-4 deficiency prevents eosinophilic rejection and uncovers a role for neutrophils in the rejection of MHC class II disparate skin grafts. Transplantation. 80 (10), 1485-1492 (2005).
  20. Gaylo, A. E., Laux, K. S., Batzel, E. J., Berg, M. E., Field, K. A. Delayed rejection of MHC class II-disparate skin allografts in mice treated with farnesyltransferase inhibitors. Transplant immunology. 20 (3), 163-170 (2009).
  21. Bose, A., Inoue, Y., Kokko, K. E., Lakkis, F. G. Cutting edge: perforin down-regulates CD4 and CD8 T cell-mediated immune responses to a transplanted organ. Journal of immunology. 170 (4), 1611-1614 (2003).
check_url/cn/51724?article_type=t

Play Video

Cite This Article
Schmaler, M., Broggi, M. A. S., Rossi, S. W. Transplantation of Tail Skin to Study Allogeneic CD4 T Cell Responses in Mice. J. Vis. Exp. (89), e51724, doi:10.3791/51724 (2014).

View Video