Summary

衰老小鼠前庭系统的行为评估

Published: July 11, 2014
doi:

Summary

电机控制和平衡性能是众所周知的恶化与年龄。本文介绍了一些非侵入性的标准行为测试与另外一个简单的旋转刺激衰老小鼠模型,以挑战在平衡性能前庭系统和显示的变化。

Abstract

在平衡性能与年龄有关的下降与不断恶化的肌肉力量,运动协调和前庭功能相关联。虽然一些研究显示变化的平衡表现型与年龄在啮齿类动物中,只有极少数孤立前庭贡献下正常情况下或在衰老期间的平衡。我们用两个标准行为测试在规定的年龄分以上的寿命来表征小鼠的平衡性能:旋转试验和斜平衡木测试。重要的是,一个定制的旋转体也被用来刺激小鼠的前庭系统(而不诱发运动病明显的迹象)。这两个测试已经被用来表明改变前庭介导的平衡性能是目前在鼠的寿命。初步的结果表明,无论是旋转试验和改性平衡木测试可用于老化作为替代更diffic期间识别变化的平衡性能ULT和侵入性技术,如前庭眼(VOR)的测量。

Introduction

我们的平衡感,也许是连最基本的运动活动,包括散步和车削中最容易被忽视但非常重要的组成部分之一。平衡是由很多因素,包括肌肉力量,运动协调和前庭功能的影响,并且它仅在前庭神经病变的存在或不正常的老化过程中,一个全功能的平衡系统的重要性理解。扰动前庭系统往往以眩晕或头晕及不平衡导致摔倒和受伤以后1的风险增加的经验有关。这是在老年人群跌倒的地方是2伤的主要原因之一尤为关键。

前庭功能检查通常是基于前庭反射,尤其是前庭眼(VOR)或前庭collic反射(录像机)。在VOR和录像机是必不可少的图像上的稳定头部和身体的动作分别在视网膜和头部位置。一般情况下,VOR测量需要的搜索线圈微创植入测量眼球运动或眼球运动3的视频跟踪。这是在小鼠由于老鼠的眼睛和检测瞳孔的视频分析3难度小自然充满挑战。作为替代方案,录像机已被用来测量头的稳定响应于身体的动作小鼠而不需要侵入性手术4。尽管如此,一些研究特别侧重于前庭系统是如何执行作为一个整体,更重要的是它的老化过程中是如何变化的。

评估的综合平衡性能简单,无创,我们修改两个常用的行为测试。该旋转杆,斜平衡木测试评估啮齿动物和在以前的研究中电机性能的不同方面已经用于测试电池获得一个完整的简介电机能力。这种能力可能受疾病或遗传修饰,并且还以与正常发育和老化5-7相关联的处理敏感。使用旋转杆早期的工作表明,在小鼠运动协调3个月8岁后下降。此外,老鼠显示出明显的平衡赤字的平衡木测试9年龄的增加。

本文描述了为了挑战前庭系统和年轻人和年纪较大的老鼠表征上的平衡性能的后续影响使用与前庭刺激相结合的旋转杆和平衡木测试。虽然描述的简单,无创的方法并非设计为外周前庭功能独立的措施,他们也提供了一个有用而简单的行为措施,在前庭处理的多个阶段的小鼠正常老化过程中,比较细胞和亚细胞的变化。

Protocol

1。动物老鼠1岁,9,和13个月大的(C57/BL6)是从动物资源中心(澳大利亚珀斯)获得。这些小鼠被安置在标准的鼠笼博世啮齿动物设施在悉尼大学的12/12小时亮/暗周期,获得食物和水随意 。下面列出的程序已获悉尼动物伦理委员会的大学。 把鼠标笼子进入考场每个测试10分钟前,让小鼠使其恢复到测试环境。 2,转棒设置的旋转杆装置( <str…

Representative Results

转棒小鼠的运动性能被描述为记录每只小鼠在8试验的时间要下降(TTF)。使用TTF的这些测量结果,对每个小鼠训练曲线可以绘制。 图2示出的酮1个月大的小鼠和1个9个月大的小鼠在8试验的过程中,电动机的性能的例子。这些训练曲线表明在第一个3-5的试验,随后再高原增加TTF。 TTF的测量结果记录在高原之前被认为是训练( 图2),同时,形成了高原TTF?…

Discussion

该议定书中的关键步骤

以前的工作已经表明,它很容易训练过度小鼠同时在旋转杆和平衡梁装置和作为结果,获得准确的测量结果可以是具有挑战性15。例如,过度训练对转棒可导致在这两个驯化和试用期的小鼠故意跳下销钉,而过度训练平衡木上可能会导致更频繁的停车(探索行为),并在相反方向行驶( 对启动线)15。最终,过度训练可导致电机实…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge The Garnett Passe and Rodney Williams Memorial Foundation and the Bosch Institute Animal Behavioural Facility.

Materials

Rotarod IITC Life Science Inc. #755 "Rat dowels" = 70 mm diameter. Do not allow ethanol contact perspex.
iPhone Apple Can use any type of camera (e.g. Logitech webcam described above). Velcro fixed to the back surface for attachment to the the 3D articulated arm.
3D articulated arm Fisso/Baitella Classic 3300-28 Any type of stable vertical stand would be adequate. Velcro is fixed to the apical end of the arm for iPhone attachment.
Wooden walking beam: 1m long strip of smooth wood with a circular cross-section of 14 mm diameter A range of diameters and cross section shapes can be used to suit experimental parameters
Wooden goal box (130 x 140 x 220 mm) made from 11 mm thick boards
Support stand made of 41 x 41 mm beams: 2 vertical beams 525 and 590 mm from ground at the start and goal ends respectively; 803 mm horizontal beam that runs along the ground directly under the walking beam; two 20 mm long beams act as "feet", joining the horizontal and vertical beams at each end; a 21 x 21 x 36 mm block hewn at the apical end of the "starting" vertical beam; a 13 x 13 mm aperture cut out of the centre of this block, forming a tunnel which runs perpendicular to the walking beam.  Brace all joins with small steel brackets. 
Adjustible metal ring (13 mm wide) Pass this through the aperture in the block, pass the starting end of the balance beam through this ring and tighten until the beam is firmly in place.
Black paint (water based) Handycan Acrylic Matt Black 2-3 coats for all wooden surfaces of the balance beam apparatus
Clear finish Wattle Estapol Polyurethane Matt Single coat for all beams. Double coat for all other surfaces of the balance beam apparatus
Foam, packaging material To cushion any falls from the balance beam
Electrical tape Fix webcam to roof.
70% Ethanol, paper towels Clean beam and goal box between each animal.
Gauze pads/paper towels To line the floor of the goal box
Mouse house (from home cage)

References

  1. Agrawal, Y., et al. Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001-2004. Arch. Intern. Med. 169, 938-944 (2009).
  2. Schwab, C. W., Kauder, D. R. Trauma in the geriatric patient. Arch. Surg. 127, 701-706 (1992).
  3. Stahl, J. S., et al. A comparison of video and magnetic search coil recordings of mouse eye movements. J. Neurosci. Methods. 99, 101-110 (2000).
  4. Takemura, K., King, W. M. Vestibulo-collic reflex (VCR) in mice. Exp. Brain Res. 167, 103-107 (2005).
  5. Carter, R. J., et al. Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J. Neurosci. 19, 3248-3257 (1999).
  6. Wallace, J. E., et al. Motor and reflexive behavior in the aging rat. J. Gerontol. 35, 364-370 (1980).
  7. Ingram, D. K., et al. Differential effects of age on motor performance in two mouse strains. Neurobiol. Aging. 2, 221-227 (1981).
  8. Serradj, N., Jamon, M. Age-related changes in the motricity of the inbred mice strains 129/sv and C57BL/6j. Behav. Brain Res. 177, 80-89 (2007).
  9. Gage, F. H., et al. Spatial learning and motor deficits in aged rats. Neurobiol. Aging. 5, 43-48 (1984).
  10. Rustay, N. R., et al. Influence of task parameters on rotarod performance and sensitivity to ethanol in mice. Behav. Brain Res. 141, 237-249 (2003).
  11. Xiaocheng, W., et al. Expression of calcitonin gene-related peptide in efferent vestibular system and vestibular nucleus in rats with motion sickness. PloS One. 7, (2012).
  12. Beraneck, M., et al. Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing. PloS One. 7, (2012).
  13. Carter, R. J., et al. Motor coordination and balance in rodents. Curr. Protoc. Neurosci. , (2001).
  14. Brooks, S. P., Dunnett, S. B. Tests to assess motor phenotype in mice: a user’s guide. Nat. Rev. Neurosci. 10, 519-529 (2009).
  15. Luong, T. N., et al. Assessment of motor balance and coordination in mice using the balance beam. J. Vis. Exp. (49), (2011).
  16. McFadyen, M. P., et al. Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes Brain Behav. 2, 214-219 (2003).
  17. Shiga, A., et al. Aging effects on vestibulo-ocular responses in C57BL/6 mice: comparison with alteration in auditory function. Audiol. Neurootol. 10, 97-104 (2005).
  18. Stahl, J. S. Eye movements of the murine P/Q calcium channel mutant rocker, and the impact of aging. J. Neurophysiol. 91, 2066-2078 (2004).
  19. Fahlstrom, A., et al. Behavioral changes in aging female C57BL/6 mice. Neurobiol. Aging. 32, 1868-1880 (2011).
  20. Bâ, A., Seri, B. V. Psychomotor functions in developing rats: ontogenetic approach to structure-function relationships. Neurosci. Biobehav. Rev. 19, 413-425 (1995).
  21. Yu, X., et al. A novel animal model for motion sickness and its first application in rodents. Physiol. Behav. 92, 702-707 (2007).
  22. Tung, V. W., et al. An isolated semi-intact preparation of the mouse vestibular sensory epithelium for electrophysiology and high-resolution two-photon microscopy. J. Vis. Exp. (76), (2013).

Play Video

Cite This Article
Tung, V. W. K., Burton, T. J., Dababneh, E., Quail, S. L., Camp, A. J. Behavioral Assessment of the Aging Mouse Vestibular System. J. Vis. Exp. (89), e51605, doi:10.3791/51605 (2014).

View Video