Time-lapse imaging in the living animal provides valuable information on structural reorganization in the intact brain. Here, we introduce a thinned-skull preparation that allows transcranial imaging of fluorescently labeled synaptic structures in the living mouse cortex by two-photon microscopy.
Nella corteccia dei mammiferi, i neuroni formano reti estremamente complicate e scambiare informazioni a livello delle sinapsi. I cambiamenti della concentrazione sinaptica, nonché aggiunta / rimozione di sinapsi, si verificano in modo dipendente dall'esperienza, fornendo la base strutturale di plasticità neuronale. Come componenti postsinaptici delle sinapsi più eccitatori nella corteccia, spine dendritiche sono considerati un buon indicatore di sinapsi. Prendendo vantaggi della genetica del topo e tecniche di etichettatura fluorescenti, i singoli neuroni e le loro strutture sinaptiche possono essere etichettati nel cervello intatto. Qui vi presentiamo un protocollo di imaging transcranica con due fotoni microscopia a scansione laser per seguire fluorescente post-sinaptici spine dendritiche nel tempo in vivo. Questo protocollo utilizza un preparato assottigliato-teschio, che mantiene il cranio intatto ed evita effetti infiammatori provocati dall'esposizione delle meningi e la corteccia. Pertanto, le immagini possono essere acquisite subito dopo suviene eseguita rgery. La procedura sperimentale può essere eseguita ripetutamente su vari intervalli temporali da ore ad anni. L'applicazione di questa preparazione può anche essere esteso per indagare diverse regioni corticali e strati, così come altri tipi di cellule, in condizioni fisiologiche e patologiche.
La corteccia dei mammiferi partecipa a molte funzioni cerebrali, dalla percezione e il controllo del movimento per l'elaborazione delle informazioni sensoriali astratta e cognizione. Varie funzioni corticali si basano sui diversi circuiti neurali, che sono costituiti da diversi tipi di neuroni che comunicano e scambiano informazioni su singole sinapsi. La struttura e la funzione delle sinapsi sono costantemente in corso di modifica in risposta alle esperienze e patologie. Nel cervello maturo, la plasticità sinaptica assume la forma di entrambe le modifiche di forza e l'aggiunta / rimozione di sinapsi, che giocano un ruolo importante nella formazione e il mantenimento di un circuito neurale funzionale. Spine dendritiche sono le componenti postsinaptici della maggioranza delle sinapsi eccitatorie nel cervello dei mammiferi. Il fatturato costante e le variazioni morfologiche delle spine si crede per servire come un buon indicatore di modifiche nelle connessioni sinaptiche 1-7.
Due fotoni scansione laser microscopia offre penetrazione profonda attraverso fitti, preparati opachi e bassa fototossicità, che lo rende adatto per l'imaging dal vivo nel cervello intatto 8. In combinazione con marcatura fluorescente, imaging a due fotoni fornisce un potente strumento per sbirciare nel cervello vivente e seguire riorganizzazione strutturale a livello delle sinapsi individuali con alta risoluzione temporale e spaziale. Vari metodi sono stati utilizzati per preparare topi per l'imaging dal vivo 9-13. Qui, descriviamo un preparato assottigliato-teschio in vivo di due fotoni imaging per studiare la plasticità strutturale postsinaptici spine dendritiche nella corteccia mouse. Usando questo approccio, i nostri studi recenti hanno rappresentato un quadro dinamico di cambiamenti spine dendritiche in risposta alle abilità motoria imparando Con la crescente disponibilità di animali transgenici con sottoinsiemi di neuroni fluorescente e rapido sviluppo di vivo tecniche in materia di etichettatura, procedure analoghe qui descritti possono essere applicati anche di indaginete altri tipi cellulari e regioni corticali, in combinazione con altre manipolazioni, così come utilizzato in modelli di malattia 16-23.
Per ottenere un successo preparato assottigliato-teschio, diversi passaggi in questo protocollo sono cruciali. 1) Lo spessore del cranio. L'osso cranico ha una struttura a sandwich, con due strati di alta densità dell'osso compatto e uno strato intermedio di bassa densità dell'osso spugnoso. Mentre il micro trapano ad alta velocità è adatto per rimuovere gli strati esterni di osso compatto e osso spugnoso, la lama microchirurgico è ideale per diluire lo strato interno di osso compatto. Poiché lo spesso…
The authors have nothing to disclose.
Ringraziamo James Perna per l'illustrazione grafica. Questo lavoro è stato sostenuto da sovvenzioni dal National Institute of Mental Health a YZ
Ketamine | Bioniche Pharma | 67457-034-10 | Mixed with xylazine for anesthesia |
Xylazine | Lloyd laboratories | 139-236 | Mixed with ketamine for anesthesia |
Saline | Hospira | 0409-7983-09 | 0.9% NaCl for injection and imaging |
Razor blades | Electron microscopy sciences | 72000 | Double-edge stainless steel razor blades |
Alcohol pads | Fisher Scientific | 06-669-62 | Sterile alcohol prep pads |
Eye ointment | Henry Schein | 102-9470 | Petrolatum ophthalmic ointment sterile ocular lubricant |
High-speed micro drill | Fine Science Tools | 18000-17 | The high-speed micro drill is suitable for thinning the outer layer of compact bone and targeting a small area |
Micro drill steel burrs | Fine Science Tools | 19007-14 | 1.4 mm diameter |
Microsurgical blade | Surgistar | 6961 | The microsurgical blade is suitable for thinning the inner layer of compact bone and middler layer of spongy bone |
Cyanoacrylate glue | Fisher Scientific | NC9062131 | Fix the head plate onto the skull |
Suture | Havard Apparatus | 510461 | Non-absorbale, sterile silk suture, 6-0 monofilament |
Dissecting microscope | Olympus | SZ61 | |
CCD camera | Infinity | ||
Two-photon microscope | Prairie Technologies | Ultima IV | |
10X objective | Olympus | NA 0.30, air | |
60X objective | Olympus | NA 1.1, IR permeable, water immersion | |
Ti-sapphire laser | Spectra-Physics | Mai Tai HP |