Протоколы здесь описать кинетические анализы белок-белковых взаимодействий с Био-слоя интерферометрии. АТФ-синтаза F-Тип, который участвует в энергетическом обмене сотового, может быть запрещена по его ε-субъединицы у бактерий. Мы адаптировали Био-слоя интерферометрии для изучения взаимодействия каталитического комплекса с ингибиторной С-концевого домена ε в.
Мы описали использование био-слоя интерферометрии для изучения ингибирующие взаимодействия субъединицы ε с каталитического комплекса кишечной палочки АТФ-синтазы. Бактериальный F-типа СПС синтазы является целью новой, FDA утвержденных антибиотика по борьбе с лекарственно-устойчивым туберкулезом. Понимание бактерии конкретные авто-ингибирование АТФ-синтазы в С-концевого домена субъединицы ε может обеспечить новые средства для целевой фермент для открытия антибактериальных препаратов. C-концевой домен ε претерпевает драматические конформационные изменения, когда фермент переходы между активными и неактивными государств, и лигандов каталитического-сайте может влиять, какие из конформации ε является преобладающим. В анализе измеряют кинетика связывания / диссоциации ε в с каталитического комплекса, так и косвенно измередавлениях сдвиг фермента с привязкой ε и из по-видимому, nondissociable тормозного конформации. Интерферометрии сигнал Био-слой не чрезмерно чувствительны к состава раствора, поэтому он также может быть использован для мониторинга аллостерические эффекты лигандов каталитического-сайте по конформационных изменений ε в.
Белок-белковые взаимодействия важны для многих биологических процессах, и метка свободной оптические методы, такие как поверхностного плазмонного резонанса (SPR) были использованы в пробирке для исследования кинетики связывания и диссоциации 1. Большинство этикеток без методы иммобилизации один биомолекулы на поверхности датчика и использовать оптический сигнал для обнаружения связывающего партнера из раствора, как это связывает с иммобилизованным биомолекулы 1. В то время как SPR является высоко чувствительным методом, он склонен к помехам из-за изменений показателя преломления раствора, протекающего через датчик 2. Хотя это и не так чувствительны, как SPR, Био-слоя интерферометрии (BLI) менее подвержен влиянию изменений в образец композиции 1,3. BLI использует волоконно-оптические биосенсоры, которые имеют собственный биосовместимого покрытия на кончике. Система, используемая здесь (Октет-RED96) содержит восемь спектрофотометры. Белый свет подается по трубам к ряду зондов, которые перемещаются на робота-манипулятора. Оптоволоконные датчики арэ подхвачена зондов и переехал в 96-луночный планшет с образцами. Одна из молекул-мишеней иммобилизуют на поверхности биосенсора. Тогда датчики перемещаются в лунки, содержащие привязки партнера в растворе. BLI контролирует ассоциацию связывающим партнером с иммобилизованным молекулы, а затем контролирует диссоциации после переезда датчиков к решению без обязательного партнера. Связывание молекул на поверхность биосенсора приводит к изменению оптической интерференции между световыми волнами, которые отражают обратно в спектрофотометров от внутренней поверхности и от внешнего интерфейса между датчиком и раствора. Эти изменения в помех может быть количественно и используется для определения кинетические показатели связывания и диссоциации, как показано в анимации, показанной на фиг.1.
Мы применили BLI измерить взаимодействие между каталитического комплекса бактериальной АТФ-синтазы и его ε-субъединицы, которая может автоматически ингибируют фермент. АТФ сиnthase является мембрана встраиваемый поворотный наномотор, который катализирует синтез и гидролиз АТФ 4. Каталитический комплекс (F 1) может быть выделено в растворимой форме, который работает в качестве АТФазы. Субъединицы ε имеет два домена: N-концевой домен (NTD) необходим для правильного монтажа и функциональной соединение фермента, но не взаимодействует непосредственно с каталитическими подразделений; С-концевой домен (CTD) может ингибировать фермент, взаимодействуя с несколько каталитические субъединицы 5,6. Эта норма ε-опосредованной специфичен для бактериальных АТФ-синтазы и не наблюдается в митохондриальной гомолога. АТФ-синтаза стала мишенью для антибактериальных препаратов, как показывает недавнее утверждение FDA из bedaquiline для лечения лекарственно-устойчивого туберкулеза 7. Таким образом, таргетинг тормозящее роль ε не соответствует лекарственных препаратов может дать антибактериальные, которые не угнетают митохондриальную АТФ-синтазы. С изолированной каталитического комплекса (F 1), εстановится разъединимый субъединицы. Тем не менее, с ε, связанного с F 1, εCTD может пройти значительное конформационные изменения, частично вставки в центральной полости фермента и формирование тормозное состояние, который вряд ли отделить непосредственно 6,8. Мы используем BLI для измерения кинетики F 1 / ε связывания и диссоциации, так и косвенно, изучить аллостерические эффекты каталитического сайт лигандов на конформации ε в.
В нашей системе ε была выбрана для иммобилизации на поверхности датчика с сигналом BLI (например, SPR) чувствителен к массе молекул связывания на поверхности. Ε-субъединица является малым (~ 15 кДа) относительно основного F 1 комплекса (~ 347 кДа). Таким образом, большее сигнал BLI будет результатом связывания F 1 с иммобилизованным ε. В целях мониторинга F 1 диссоциации, которая может быть очень медленным, ε должны сильно обездвижен. Таким образом, мы приняли решение biotinylateИ иммобилизации его на покрытых стрептавидином биосенсоров. Белки могут быть биотинилированного по формуле (I) случайной модификации поверхностных лизина 9, (II) реакции уникальной собственном или инженерии цистеина с биотин-малеимид реагента 10 или (III) генетически добавление определенного биотин-акцепторных пептид, который ферментативно биотинилированного в течение в естественных условиях экспрессии меченых белков 11. В нашей системе ε биотинилируют методом (III) 8. После того, как биотин-меченый ε обездвижен на датчики стрептавидином, BLI может измерить связывание и диссоциация F 1, который был обедненный субъединицы ε (F 1 (-ε)). Для экспериментов, описанных здесь, предварительные анализы были сделаны, чтобы определить разумные объемы биотинилированной белка для иммобилизации на датчиках. Это может варьироваться в зависимости от молекулярной массы белка и его партнером по связыванию, но цель состоит в том, чтобы определить минимальное количество иммобилизованным белком тшапка обеспечивает (I) приемлемый сигнал-шум для связывания кинетики с низкой концентрацией партнером по связыванию (ниже K D) и (II) минимальным искажением кинетику связывания с почти насыщение концентрации партнером по связыванию. Кроме того, стехиометрия биотинилирования могут различаться (но избежать> 1 моль биотин / моль белка), так что некоторые начальная анализа могут быть необходимы для каждого нового большого количества биотинилированного белка для подтверждения, что последовательный сигнал BLI может быть достигнуто в течение иммобилизации на покрытых стрептавидином датчики.
Имеющиеся в настоящее время приборы для BLI позволит существенно пропускную способность и гибкость в анализах на биомолекулярных взаимодействий. Различные образца раствора, распределяют в лунки черного микротитрационного планшета, а также набор параллельных датчиков BLI запрограммир?…
The authors have nothing to disclose.
Мы благодарим FortéBio для обеспечения графики, используемые на рисунке 1. Эта работа была поддержана NIH грант GM083088 к ПРО ТВД
Octet-RED96 | Pall/FortéBio | 30-5048 | |
Bovine Serum Albumin | Sigma | A6003-10G | Fatty Acid free |
Biosensor/Streptavidin | Pall/FortéBio | 18-5019 | Tray of 96 sensors |
Microtiter plate | Greiner Bio-one | 655209 | Black, Polypropylene |
Data Acquisition software | Pall/FortéBio | Version 6.4 | Newer versions available |
Data Analysis software | Pall/FortéBio | Version 6.4 | Newer versions available |