Summary

跟踪恐惧条件小鼠

Published: March 20, 2014
doi:

Summary

在接下来的实验中,我们描述了一个协议,用于在小鼠体内微量恐惧条件。这种类型的联想记忆,包括分隔中性刺激和非条件刺激一丝时期。

Abstract

在这个实验中,我们提出了一个方法来衡量学习和记忆。在这里介绍的一丝恐惧条件的协议,存在一个中性刺激和无条件刺激之间的五个配对。有分隔各个空调审判20秒跟踪期。翌日冻结呈现条件刺激(CS)和跟踪一段期间测量。在第三天有一个8分钟的试验来测量情景记忆。代表性的结果是从出席与厌恶无条件刺激(电击),相对于所接收的音调演示,而不无条件刺激小鼠的小鼠。一丝恐惧条件已被成功地用于检测细微的学习和记忆障碍和增强功能未发现与其他恐惧条件反射的方法小鼠。这种类型的恐惧条件的被认为是依赖于内侧前额叶皮质和海马之间的连接。一个电流争论是该方法是否被认为是杏仁核无关。因此,其他的恐惧条件测试是需要检查杏仁核依赖性学习和记忆的效果,如通过延迟恐惧条件反射。

Introduction

在恐惧条件反射的中性刺激(NS)是搭配厌恶无条件刺激(美国)。的NS通常是一个音,并通过反复配对与美国成为条件刺激(CS)。然后将CS可以引起一个条件反应(CR),如冷冻,在没有厌恶美国。常用的恐惧制约的协议是延迟调节。在这个协议中的NS和美国的发病是相连或与在刺激呈现一些重叠。尽管延迟恐惧制约是最常用的类型时空关联空调之一,还有其他一些类型的关联调理时间安排:同步调理,调理落后,并跟踪调节1。在跟踪恐惧条件存在着造成了“跟踪”期间几秒钟的NS和美国之间的经济刺激,无间隔。

一些研究已经报道赤字在痕迹恐惧调理S当神经病变产生的结构,输入到海马区2-5或当药物制剂被用来阻止受体功能的海马。病变海马导致在痕迹条件和上下文调理缺陷,但不影响延迟的恐惧条件8。有几个好处使用痕迹恐惧条件。怕调理协议可以实现在一个为期三天的测试期,并允许海马依赖的记忆,是不是空间相关的。跟踪恐惧条件可以作为一个补充试验的Morris水迷宫,新物体识别测试中,或在调查的海马依赖性记忆的其他迷宫测试。

Protocol

在下面的实验中使用的小鼠产生和安置在贝勒大学在22℃的环境温度下,用14小时光照和10小时黑暗(20:00至下午六小时)昼夜周期。给予小鼠随意获取食物和水。所有程序的小鼠均符合卫生指引全国学院实验动物的护理和使用以及动物方案经贝勒大学动物护理和使用委员会。 概观跟踪空调恐惧任务是基于由Wiltgen及其同事9所述的程序。 <p cl…

Representative Results

对于有代表性的结果,我们提出从较收到的中性刺激,但没有收到非条件刺激(无震动状态)小鼠收到的中性刺激配对与非条件刺激(休克状态)的控制C57BL/6J成年小鼠的数据。它运行这个条件时,首先设置此行为测试,以确定是否该协议已经被正确执行是非常重要的。 图1中的数据代表了一丝恐惧条件测试C57BL/6J小鼠的训练日。它通常没有必要在训练天在所有条…

Discussion

已经有已经阐明了神经电路,跟踪的基础恐惧条件反射的几项研究。追溯恐惧条件,相信涉及的12-14海马CA1区。也有证据表明,内侧前额叶皮质(mPFC的)起着跟踪眼睛一眨不眨空调15大的作用,而内侧前额叶皮质已被发现参与了一丝恐惧条件。一项研究发现,内侧前额叶皮质的神经元在跟踪期间提供持续的活性,从 ​​而提供一个可以追踪间隔17期间维持内存的结构。

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由贝勒大学的研究理事会,并授予从癫痫症基金会的研究经费支持。

Materials

FreezeFrame Coulbourn
30% Isopropanol Purchase 90% isopropanol and dilute it down to 30%
70% Ethanol
Amp-meter Med-Associates ENV-420 Windows XP, Vista, and 7 Compatible (32-bit only)
Digital Sound Level Meter 33-2055
Vanilla Extract McCormick Pure Vanilla Extract
Sticky Notes Post-it 3X3 inch

References

  1. Powell, R. A., Honey, P. L., Symbaluk, D. G. . Introduction to learning and behavior. , .
  2. Tsaltas, E., Preston, G. C., Gray, J. A. The effects of dorsal bundle lesions on serial and trace conditioning. Behav. Brain Res. 10, 361-374 (1983).
  3. McAlonan, G. M., Dawson, G. R., Wilkinson, L. O., Robbins, T. W., Everitt, B. J. The effects of AMPA-induced lesions of the medial septum and vertical limb nucleus of the diagonal band of Broca on spatial delayed non-matching to sample and spatial learning in the water maze. Eur. J. Neurosci. 7, 1034-1049 (1995).
  4. Chowdhury, N., Quinn, J. J., Fanselow, M. S. Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behav. Neurosci. 119, 1396-1402 (2005).
  5. Quinn, J. J., Oommen, S. S., Morrison, G. E., Fanselow, M. S. Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace, and delay fear conditioning in a temporally specific manner. Hippocampus. 12, 495-504 (2002).
  6. Misane, I., et al. Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice. Hippocampus. 15, 418-426 (2005).
  7. Quinn, J. J., Loya, F., Ma, Q. D., Fanselow, M. S. Dorsal hippocampus NMDA receptors differentially mediate trace and contextual fear conditioning. Hippocampus. 15, 665-674 (2005).
  8. McEchron, M. D., Bouwmeester, H., Tseng, W., Weiss, C., Disterhoft, J. F. Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus. 8, 638-646 (1998).
  9. Wiltgen, B. J., Sanders, M. J., Ferguson, C., Homanics, G. E., Fanselow, M. S. Trace fear conditioning is enhanced in mice lacking the delta subunit of the GABAA receptor. Learn. Mem. 12, 327-333 (2005).
  10. Davis, R. R., et al. Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear. Res. 155, 82-90 (2001).
  11. Zheng, Q. Y., Johnson, K. R., Erway, L. C. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear. Res. 130, 94-107 (1999).
  12. Moyer, J. R., Thompson, L. T., Disterhoft, J. F. Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. 16, 5536-5546 (1996).
  13. Leuner, B., Falduto, J., Shors, T. J. Associative memory formation increases the observation of dendritic spines in the hippocampus. J. Neurosci. 23, 659-665 (2003).
  14. McEchron, M. D., Disterhoft, J. F. Hippocampal encoding of non-spatial trace conditioning. Hippocampus. 9, 385-396 (1999).
  15. McLaughlin, J., Skaggs, H., Churchwell, J., Powell, D. A. Medial prefrontal cortex and pavlovian conditioning: trace versus delay conditioning. Behav. Neurosci. 116, 37-47 (2002).
  16. Runyan, J. D., Moore, A. N., Dash, P. K. A role for prefrontal cortex in memory storage for trace fear conditioning. J. Neurosci. 24, 1288-1295 (2004).
  17. Gilmartin, M. R., McEchron, M. D. Single neurons in the medial prefrontal cortex of the rat exhibit tonic and phasic coding during trace fear conditioning. Behav. Neurosci. 119, 1496-1510 (2005).
  18. Crow, T., Xue-Bian, J. J., Siddiqi, V., Kang, Y., Neary, J. T. Phosphorylation of mitogen-activated protein kinase by one-trial and multi-trial classical conditioning. J. Neurosci. 18, 3480-3487 (1998).
  19. Martin, K. C., et al. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron. 18, 899-912 (1997).
  20. Crestani, F., et al. Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proc. Natl. Acad. Sci. U.S.A. 99, 8980-8985 (2002).
  21. Crestani, F., et al. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat. Neurosci. 2, 833-839 (1999).
  22. Moore, M. D., et al. Trace and contextual fear conditioning is enhanced in mice lacking the alpha4 subunit of the GABA(A) receptor. Neurobiol. Learn. Mem. 93, 383-387 (2010).
  23. Cushman, J. D., Moore, M. D., Jacobs, N. S., Olsen, R. W., Fanselow, M. S. Behavioral pharmacogenetic analysis on the role of the alpha4 GABA(A) receptor subunit in the ethanol-mediated impairment of hippocampus-dependent contextual learning. Alcohol Clin. Exp. Res. 35, 1948-1959 (2011).
  24. Raybuck, J. D., Lattal, K. M. Double dissociation of amygdala and hippocampal contributions to trace and delay fear conditioning. PLoS ONE. 6, (2011).
  25. Kwapis, J. L., Jarome, T. J., Schiff, J. C., Helmstetter, F. J. Memory consolidation in both trace and delay fear conditioning is disrupted by intra-amygdala infusion of the protein synthesis inhibitor anisomycin. Learn. Mem. 18, 728-732 (2011).
  26. Gilmartin, M. R., Kwapis, J. L., Helmstetter, F. J. Trace and contextual fear conditioning are impaired following unilateral microinjection of muscimol in the ventral hippocampus or amygdala, but not the medial prefrontal cortex. Neurobiol. Learn. Mem. 97, 452-464 (2012).
  27. Baysinger, A. N., Kent, B. A., Brown, T. H. Muscarinic receptors in amygdala control trace fear conditioning. PLoS ONE. 7, (2012).
  28. Wanisch, K., Tang, J., Mederer, A., Wotjak, C. T. Trace fear conditioning depends on NMDA receptor activation and protein synthesis within the dorsal hippocampus of mice. Behav. Brain. 157, 63-69 (2005).
  29. Smith, D. R., Gallagher, M., Stanton, M. E. Genetic background differences and nonassociative effects in mouse trace fear conditioning. Learn. Mem. 14, 597-605 (2007).
  30. Rudy, J. W., O’Reilly, R. C. Contextual fear conditioning, conjunctive representations, pattern completion, and the hippocampus. Behav. Neurosci. 113, 867-880 (1999).
  31. Wiltgen, B. J., Sanders, M. J., Anagnostaras, S. G., Sage, J. R., Fanselow, M. S. Context fear learning in the absence of the hippocampus. J. Neurosci. 26, 5484-5491 (2006).
  32. Reijmers, L. G., Perkins, B. L., Matsuo, N., Mayford, M. Localization of a stable neural correlate of associative memory. Science. 317, 1230-1233 (2007).
  33. Huerta, P. T., Sun, L. D., Wilson, M. A., Tonegawa, S. Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron. 25, 473-480 (2000).
  34. Jacobs, N. S., Cushman, J. D., Fanselow, M. S. The accurate measurement of fear memory in Pavlovian conditioning: Resolving the baseline issue. J. Neurosci. Methods. 190, 235-239 (2010).

Play Video

Cite This Article
Lugo, J. N., Smith, G. D., Holley, A. J. Trace Fear Conditioning in Mice. J. Vis. Exp. (85), e51180, doi:10.3791/51180 (2014).

View Video