Эта процедура дает конечного мозга нейронов, проходя через контрольно-пропускные пункты, аналогичные тем, которые наблюдались во время развития человеческого потенциала. Ячейки могут спонтанно дифференцироваться, подвергаются воздействию факторов, которые толкают их к нейронной линии, изолированы, и высевали на покровные, чтобы обеспечить дифференциацию терминала и созревания.
Здесь, поэтапная процедура для эффективной генерации конечного мозга глутаматергической нейронов от человека плюрипотентных стволовых клеток (ЭСК) было описано. Дифференциация процесс инициируется нарушение человеческих ЭСК в сгустки которые округлить до образуют агрегаты, когда клетки помещают в суспензию культуры. Агрегаты затем выращиваются в чЭСК среды от 1-4 дней, чтобы обеспечить спонтанной дифференцировки. За это время клетки имеют потенциал, чтобы стать любой из трех зародышевых листков. С 5-8 дней, клетки помещаются в нейронной среде индукции, чтобы подтолкнуть их в нервные линии. Около 8-й день, клетки позволили прикрепить на 6-луночные планшеты и дифференцироваться во время которого нейроэпителиальных формы клеток. Эти нейроэпителиальных клетки могут быть выделены на 17-й день. Клетки могут быть как нейросферы, пока они не будут готовы к высевали на покровные. Использование щелочной среде без caudalizing факторов, нейроэпителиальных клетки specifieD на конечного мозга предшественников, которые затем могут быть дифференцированы в дальнейшем спинного конечного мозга предшественников и глутаматергической нейронов эффективно. В целом, наша система предоставляет инструмент для создания человека глутаматергической нейронов для исследователей к изучению развития этих нейронов и болезни, которые затрагивают их интересы.
Человека плюрипотентных стволовых клеток (ЭСК), в том числе и человеческие эмбриональные стволовые клетки (ЭСК) и индуцированных плюрипотентных стволовых клеток (ИПСК), обладают способностью генерировать каждый тип клеток в организме, в том числе нейронов 1-3. Направленной дифференцировки нейронов различных подтипов из человеческих ЭСК является ключом для применения этих клеток в регенеративной медицине. Поколения функциональных нейронов подтипы в процессе развития представляет собой сложный процесс, включающий индукции нейронной линии, спецификации региональных предшественников по ростро-каудальной оси и дифференциация постмитотические типов нейронов из областного предшественники 4,5. Начиная с 2001 года несколько систем были созданы для создания нейронных происхождение от ЭСК, которые обеспечили платформу для последующих поколений нейронов подтипов 6,7. На основе развития принципов, несколько типов нейронов, такие как моторные нейроны спинного 8-12, среднего DOPаминергических нейронов 13-15, и нервные клетки сетчатки 16,17 были эффективно указано из человеческих ЭСК. Это было сделано путем применения критических морфогенов, которые важны для спецификации этих нейронов типа в естественных условиях во время развития. Другие протоколы были разработаны для содействия дифференциации ЭСК в нейроны, используя либо дополнительных факторов, 18-20, такие как малые молекулы или путем совместного культивирования с другими типами клеток, чтобы помочь продвинуть дифференциация 21.
Человеческий неокортекс высоко развита и содержит много типов клеток, в том числе глутаматергической нейронов, которые играют важную роль в процессе обучения, память и когнитивные функции 22,23. Первый шаг в создании глутаматергической нейронов в культуре указать конечного мозга клеток-предшественников. Группа Yoshiki Sasai первым сообщил направленной дифференцировки предшественников из конечного мозга мыши ЭСК (mESCs) с помощью бессывороточной SuspensioРусская культура в присутствии DKK1 (который ингибирует Wnt сигнализации), а также LeftyA (который ингибирует узловой сигнализации) 24. Впоследствии, несколько групп, в том числе наша также сообщили, спецификации конечного мозга предшественников из человеческих ЭСК в бессывороточной среде 25-27. Поколение конечного мозга предшественников из человеческих ЭСК не требует использования экзогенных морфогенов и эффективность в формировании этих предшественников гораздо выше, чем от mESCs 26,27. Здесь, определенного химического системы для нейронных индукция которого была также создана группой Чжана 7 была описана. Без добавления экзогенных факторов caudalizing, этот протокол эффективно генерирует конечного мозга предшественников из человеческих ЭСК 27. Эти предшественники могут быть дифференцированы в спинной или вентральной предшественников путем регулирования сигнализации Wnt и Sonic Hedgehog (ВГГ). Спинного предшественников может дополнительно дифференцироваться в нейроны электронной глутаматергическойfficiently 27. Кроме того, этот протокол также хорошо работает для генерации глутаматергической нейронов человеческого ИПСК 28, который позволяет для генерации конкретного пациента нейронов, которые могут быть использованы для изучения механизма действия, а также потенциальных терапии для большого спектра заболеваний . Кроме того, наша система также предоставляет платформу для изучения развития и спецификации различных типов нейронов в конечном мозге.
Есть несколько важных шагов в нейронных процессов дифференциации. Важно, чтобы убедиться, что человеческие ЭСК являются плюрипотентными, потому что в противном случае клетки уже могут быть смещены в сторону становится не-нейрональных линии. Это может быть подтверждено путем окрашива?…
The authors have nothing to disclose.
Авторы хотели бы поблагодарить д-ра Ю. Sasai за щедрое предоставление FOXG1 антител. Эта работа была поддержана Коннектикут исследований стволовых клеток грантов (08-SCB-UCHC- 022 и 11-SCB24) и спастический фонда параплегия.
Reagent | Supplier | Catalog # |
Dulbecco’s modified eagle medium with F12 nutrient mixture (DMEM/F12) | Gibco | 11330-032 |
Knockout Serum Replacer | Gibco | 10828-028 |
L-glutamine (200 mM) | Gibco | 25030 |
Non Essential Amino Acids | Gibco | 1140-050 |
2-Mercaptoethanol (14.3 M) | Sigma | M-7522 |
Neurobasal medium | Gibco | 21103-049 |
N2 | Gibco | 17502-048 |
B27 | Gibco | 12587-010 |
Heparin | Sigma | H3149 |
Poly-L-ornithine hydrobromide (polyornithine) | Sigma | 116K5103 |
Laminin (human) | Sigma | L-6274 |
Laminin (mouse) | Invitrogen | 23017-015 |
FBS | Gemini | 100-106 |
Bovine serum albumin (BSA) | Sigma | A-7906 |
Dispase | Gibco | 17105-041 |
Collagenase | Invitrogen | 17104-019 |
Accutase | Innovative Cell Technologies | AT104 |
ROCK Inhibitor | Stemgent | 04-0012 |
SB431542 | Stemgent | 04-0010 |
Dorsomorphin | Stemgent | 04-0024 |
Fibroblast growth factor 2 (FGF2, bFGF) | Invitrogen | 13256-029 |
Trypsin inhibitor | Gibco | 17075 |
0.1% gelatin | Millipore | ES-006-B |
Foxg1 antibody | Dr. Y. Sasai | |
Hoxb4 antibody (1:50) | Developmental Studies Hybridoma Bank | I12 |
Pax6 antibody (1:5000) | Developmental Studies Hybridoma Bank | PAX6 |
Nkx2.1 antibody (1:200) | Chemicon | MAB5460 |
Tbr1 antibody (1:2000) | Chemicon | AB9616 |
vGLUT1 antibody (1:100) | Synaptic Systems | 135302 |
Brain derived neurotrophic factor (BDNF) | PrepoTech Inc. | 450-02 |
Glial derived neurotrophic factor (GDNF) | PrepoTech Inc. | 450-10 |
Insulin growth factor 1 (IGF1) | PrepoTech Inc. | 100-11 |
Cyclic AMP (cAMP) | Sigma | D-0260 |
Sonic hedgehog (SHH) | R&D | 1845-SH |
50 ml tubes | Becton Dickinson (BD) | 352098 |
15 ml tubes | BD | 352097 |
6 well plates | BD | 353046 |
24 well plates | BD | 353047 |
T25 flasks (untreated) | BD | 353009 |
T75 flasks (untreated) | BD | 353133 |
Coverslips | Chemiglass Life Sciences | 1760-012 |
6 cm Petri dishes | BD | 353004 |
9” glass pipetes | Fisher | 13-678-20D |
Steriflip filters (0.22 μM) | Millipore | SCGP00525 |
Stericup filters 1,000 ml (0.22 μM) | Millipore | SCGPU10RE |
Phase contrast microscope (Observer A1) | Zeiss | R2625 |
Carbon dioxide incubator (Hera Cell 150) | Thermo Electron Corporation | |
Biosafety hood (Sterilgard III Advance) | The Baker Company | |
Centrifuge (5702 R) | Eppendorf |