Summary

从人类多能干细胞的规范在前脑谷氨酸能神经元

Published: April 14, 2013
doi:

Summary

此过程产生在前脑的​​神经元通过检查站,这是人类发展过程中所观察到的类似。细胞可自发地分化,暴露因素推动对神经系,是孤立的,并镀上盖玻片,以便终末分化和成熟。

Abstract

这里,已经描述了用于高效地生成从人多能性干细胞(PSCs)端脑谷氨酸能神经元的一个逐步的过程。的分化过程开始向上舍入到时形成聚集体的悬浮培养细胞被放置在成团块通过打破人类安全公司。聚集在人类胚胎干细胞培养基中生长1-4天,以允许自发分化。在这段时间内,将细胞有能力成为任何三种胚层。从5-8天,将细胞放置在一个神经诱导培养基中,推入神经谱系。第8天左右,细胞被允许连接到6孔板上,并分化期间的时间的神经上皮细胞形式。这些神经上皮细胞,可以隔离17天。这些细胞可以保持神经球,直到他们准备好盖玻片的培养皿上。使用碱性介质中没有任何caudalizing因素,神经上皮细胞specifieD插入端脑前体,然后可以进一步区分有效地背端脑祖细胞和谷氨酸能神经元的。总的来说,我们的系统提供了一个工具来生成人体谷氨酸能神经元的研究人员研究这些神经元疾病,影响到他们的发展。

Introduction

人多能性干细胞(PSCs),包括人类胚胎干细胞(胚胎干细胞),诱导式多能性干细胞(iPS细胞),具有的能力,以产生在体内的每一个细胞类型,包括神经元1-3。定向分化为各种神经元亚型人分成合同持有这些细胞在再生医学中的应用的关键。在开发过程中的功能神经元亚型的产生是一个复杂的过程,涉及诱导的神经系的区域沿rostro尾鳍轴祖细胞,该规范,并从区域4,5祖细胞的有丝分裂后的神经元类型的分化。从2001年开始,一些系统已建立了从人类胚胎干细胞,它提供了一个平台,为后续神经元亚型6,7代产生神经系。根据发展原则,一些神经元类型,如8-12脊髓运动神经元,脑DOP13日至15日 ,胺类神经元和神经视网膜细胞16,17已有效地从人的产品分成合同中指定。这样做是通过施加临界形态发生素体内发育过程的规格,这些神经元类型是重要的。其他协议也得到了发展,促进人类胚胎干细胞分化成神经元可以使用其他的因素,如小分子或与其他类型的细胞共培养,以18-20帮助促进花芽分化21。

人类的大脑新皮质是高度发达的,包含许多类型的细胞,包括谷氨酸能神经元在学习,记忆和认知功能的22,23,其中扮演了重要的角色。产生谷氨酸能神经元在培养的第一个步骤是指定端脑的祖细胞。笹井芳树的组首次报道了端脑前体定向分化的小鼠胚胎干细胞(mESCs)使用无血清悬索桥的N培养物的存在下,DKK1(抑制Wnt信号)以及LeftyA(抑制节点信令)24。随后,几个研究小组还报告了包括我们在内的人类在无血清培养基25日至27日的物业服务端脑前体的规范。并不需要外源的形态发生和效率产生这些前体的使用是远高于从mESCs 26,27的端脑前体从人类安全公司代。在这里,神经诱导,以及设立的张的基7的化学定义的系统已被描述。此协议没有此外外源性caudalizing因素,有效地产生端脑前体从人类安全公司27。通过调节Wnt信号和Sonic Hedgehog(SHH)的信令,这些祖细胞可以分化成背侧或腹侧祖细胞,,背祖细胞进一步分化成谷氨酸能神经元Ëfficiently 27。此外,该协议还可以很好地用于谷氨酸能神经元的产生,从人类iPSCs 28,这允许针对具体患者的神经元的产生,可以利用机制的探索行动,以及潜在的治疗疾病的大型阵列。此外,我们的系统还提供了一个平台,探索不同的前脑的神经元类型的发展和规范。

Protocol

1。代的人类多能干细胞聚集体(D1-D4) 人类多能干细胞对小鼠胚胎成纤维细胞(MEF)的送料器,在胚胎干细胞的存在下与碱性成纤维细胞生长因子(bFGF,4纳克/毫升)的培养基中培养。经过5-7天的培养时,菌落大,但仍然未分化的,他们是为下一步做好准备。 应先来制备的酶溶液。在一个50毫升的试管中,溶解在1毫克/毫升的浓度成DMEM/F12培养基分散酶(或胶原酶)。由于这些解决…

Representative Results

在这里,一个协议来区分人类安全公司到端脑谷氨酸能神经元通过几个关键步骤:PSC的聚集体的形成,神经上皮细胞的诱导,在前脑祖细胞的生成,这些祖细胞的终末分化的成端脑的神经元( 图1)具有被描述。此系统是稳健的和有效率的,在端脑祖细胞和谷氨酸能神经元的生成。作为一个例子( 图2),未经此外caudalizing因素,胚胎干细胞分化为神经系27。在24天…

Discussion

在神经细胞分化过程中有几个关键的步骤。重要的是要确保人的产品分成合同,因为否则的细胞是多能干细胞,可能已经偏向成为非神经元谱系。这可以通过以下的确认染色与多能性的标记物,如即Oct4,Sox2基因,Nanog基因,和的Tra-1-60 1-3的抗人类安全公司。如果人类安全公司不重视很好后传代,ROCK抑制剂(Y27632)可以被添加到帮助。对于那些有困难,保持其细胞多能性,一些潜在的问题…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者想感谢Y.笹井,慷慨提供FOXG1抗体。这项工作是由康涅狄格州干细胞研究资助(08-SCB-UCHC- 022和11-SCB24)和痉挛性截瘫基金会。

Materials

Reagent Supplier Catalog #
Dulbecco’s modified eagle medium with F12 nutrient mixture (DMEM/F12) Gibco 11330-032
Knockout Serum Replacer Gibco 10828-028
L-glutamine (200 mM) Gibco 25030
Non Essential Amino Acids Gibco 1140-050
2-Mercaptoethanol (14.3 M) Sigma M-7522
Neurobasal medium Gibco 21103-049
N2 Gibco 17502-048
B27 Gibco 12587-010
Heparin Sigma H3149
Poly-L-ornithine hydrobromide (polyornithine) Sigma 116K5103
Laminin (human) Sigma L-6274
Laminin (mouse) Invitrogen 23017-015
FBS Gemini 100-106
Bovine serum albumin (BSA) Sigma A-7906
Dispase Gibco 17105-041
Collagenase Invitrogen 17104-019
Accutase Innovative Cell Technologies AT104
ROCK Inhibitor Stemgent 04-0012
SB431542 Stemgent 04-0010
Dorsomorphin Stemgent 04-0024
Fibroblast growth factor 2 (FGF2, bFGF) Invitrogen 13256-029
Trypsin inhibitor Gibco 17075
0.1% gelatin Millipore ES-006-B
Foxg1 antibody Dr. Y. Sasai  
Hoxb4 antibody (1:50) Developmental Studies Hybridoma Bank I12
Pax6 antibody (1:5000) Developmental Studies Hybridoma Bank PAX6
Nkx2.1 antibody (1:200) Chemicon MAB5460
Tbr1 antibody (1:2000) Chemicon AB9616
vGLUT1 antibody (1:100) Synaptic Systems 135302
Brain derived neurotrophic factor (BDNF) PrepoTech Inc. 450-02
Glial derived neurotrophic factor (GDNF) PrepoTech Inc. 450-10
Insulin growth factor 1 (IGF1) PrepoTech Inc. 100-11
Cyclic AMP (cAMP) Sigma D-0260
Sonic hedgehog (SHH) R&D 1845-SH
50 ml tubes Becton Dickinson (BD) 352098
15 ml tubes BD 352097
6 well plates BD 353046
24 well plates BD 353047
T25 flasks (untreated) BD 353009
T75 flasks (untreated) BD 353133
Coverslips Chemiglass Life Sciences 1760-012
6 cm Petri dishes BD 353004
9” glass pipetes Fisher 13-678-20D
Steriflip filters (0.22 μM) Millipore SCGP00525
Stericup filters 1,000 ml (0.22 μM) Millipore SCGPU10RE
Phase contrast microscope (Observer A1) Zeiss R2625
Carbon dioxide incubator (Hera Cell 150) Thermo Electron Corporation  
Biosafety hood (Sterilgard III Advance) The Baker Company  
Centrifuge (5702 R) Eppendorf  

References

  1. Takahashi, K., Tanabe, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  2. Thomson, J. A., Itskovitz-Eldor, J., et al. Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145-1147 (1998).
  3. Yu, J., Vodyanik, M. A., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318, 1917-1920 (2007).
  4. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20-29 (1038).
  5. Wilson, S. I., Edlund, T. Neural induction: toward a unifying mechanism. Nat. Neurosci. 4, 1161-1168 (2001).
  6. Reubinoff, B. E., Itsykson, P., et al. Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19, 1134-1140 (2001).
  7. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O., Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129-1133 (2001).
  8. Hu, B. Y., Weick, J. P., et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl. Acad. Sci. U.S.A. 107, 4335-4340 (2010).
  9. Singh Roy, N., Nakano, T., et al. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp. Neurol. 196, 224-234 (2005).
  10. Lee, H., Shamy, G. A., et al. Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells. 25, 1931-1939 (2007).
  11. Boulting, G. L., Kiskinis, E., et al. A functionally characterized test set of human induced pluripotent stem cells. Nat. Biotechnol. 29, 279-286 (2011).
  12. Li, X. J., Du, Z. W., et al. Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215-221 (2005).
  13. Perrier, A. L., Tabar, V., et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 101, 12543-12548 (2004).
  14. Roy, N. S., Cleren, C., et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med. 12, 1259-1268 (2006).
  15. Yan, Y., Yang, D., et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells. 23, 781-790 (2005).
  16. Meyer, J. S., Shearer, R. L., et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc. Natl. Acad. Sci. U.S.A. 106, 16698-16703 (2009).
  17. Osakada, F., Ikeda, H., et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol. 26, 215-224 (2008).
  18. Carpenter, M. K., Inokuma, M. S., et al. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol. 172, 383-397 (2001).
  19. Chambers, S. M., Fasano, C. A., et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275-280 (2009).
  20. Chambers, S. M., Qi, Y., et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715-720 (2012).
  21. Kawasaki, H., Mizuseki, K., et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. 28, 31-40 (2000).
  22. Rubenstein, J. L., Beachy, P. A. Patterning of the embryonic forebrain. Curr. Opin. Neurobiol. 8, 18-26 (1998).
  23. Hevner, R. F., Hodge, R. D., Daza, R. A., Englund, C. Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci. Res. 55, 223-233 (2006).
  24. Watanabe, K., Kamiya, D., et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288-296 (2005).
  25. Watanabe, K., Ueno, M., et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681-686 (2007).
  26. Pankratz, M. T., Li, X. J., et al. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells. 25, 1511-1520 (2007).
  27. Li, X. J., Zhang, X., et al. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development. 136, 4055-4063 (2009).
  28. Zeng, H., Guo, M., et al. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One. 5, e11853 (2010).
  29. Kim, D. S., Lee, J. S., et al. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev. 6, 270-281 (2010).
  30. Zhang, X., Huang, C. T., et al. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell. 7, 90-100 (2010).
  31. Stern, C. D. Initial patterning of the central nervous system: how many organizers. Nat. Rev. Neurosci. 2, 92-98 (2001).
  32. Ma, L., Hu, B., et al. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell. 10, 455-464 (2012).
  33. Li, W., Wei, W., et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell. 4, 16-19 (2009).
  34. Lowry, W. E., Richter, L., et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 105, 2883-2888 (2008).
  35. Dimos, J. T., Rodolfa, K. T., et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 321, 1218-1221 (2008).
  36. Ebert, A. D., Yu, J., et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 457, 277-280 (2009).
  37. Lee, G., Papapetrou, E. P., et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 461, 402-406 (2009).
  38. Park, I. H., Arora, N., et al. Disease-specific induced pluripotent stem cells. Cell. 134, 877-886 (2008).
  39. Chamberlain, S. J., Chen, P. F., et al. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc. Natl. Acad. Sci. U.S.A. 107, 17668-17673 (2010).
  40. Kiskinis, E., Eggan, K. Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest. 120, 51-59 (2010).
  41. Koch, P., Tamboli, I. Y., et al. Presenilin-1 L166P mutant human pluripotent stem cell-derived neurons exhibit partial loss of gamma-secretase activity in endogenous amyloid-beta generation. Am. J. Pathol. 180, 2404-2416 (2012).
  42. Walsh, R. M., Hochedlinger, K. Modeling Rett syndrome with stem cells. Cell. 143, 499-500 (2010).
  43. Egawa, N., Kitaoka, S., et al. Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Sci. Transl. Med. 4, (2012).
  44. Kola, I., Landis, J. Can the pharmaceutical industry reduce attrition rates. Nature Reviews Drug Discovery. 3, 711-716 (2004).
check_url/cn/50321?article_type=t

Play Video

Cite This Article
Boisvert, E. M., Denton, K., Lei, L., Li, X. The Specification of Telencephalic Glutamatergic Neurons from Human Pluripotent Stem Cells. J. Vis. Exp. (74), e50321, doi:10.3791/50321 (2013).

View Video