Summary

Fabricación y caracterización de guías de onda de cristal fotónico luz lenta y cavidades

Published: November 30, 2012
doi:

Summary

El uso de guías de ondas de luz de cristal fotónico lentos y cavidades ha sido ampliamente adoptado por la comunidad fotónica en muchas aplicaciones diferentes. Por lo tanto la fabricación y caracterización de estos dispositivos son de gran interés. En este trabajo se describe nuestra técnica de fabricación y dos métodos de caracterización óptica, a saber: la dispersión interferométrica (guías de onda) y resonancia (cavidades).

Abstract

Slow luz ha sido uno de los temas candentes en la comunidad fotónica en la última década, generando un gran interés tanto desde el punto de vista fundamental y por su considerable potencial para aplicaciones prácticas. Slow guías de ondas de luz de cristal fotónico, en particular, han jugado un papel importante y se han empleado con éxito para retrasar las señales ópticas 1-4 y 8-11 la mejora de ambos dispositivos lineales y no lineales 5.7.

Cavidades de cristal fotónico lograr efectos similares a los de guías de ondas de luz lenta, pero en un menor ancho de banda. Estas cavidades ofrecen un alto ratio de Q-factor/volume, para la realización de óptica 12 y 13 eléctricamente bombeado láser ultra-bajos de umbral y la mejora de los efectos no lineales. 14-16 Además, los filtros pasivos 17 y moduladores 18-19 se ha demostrado, exhibiendo ultra-estrecho ancho de línea de alta free-espectral range y registrar los valores de consumo de energía baja.

Para lograr estos resultados emocionantes, un protocolo robusto fabricación repetitiva debe ser desarrollado. En este artículo, echamos un vistazo en profundidad a nuestro protocolo de fabricación que utiliza la litografía por haz de electrones para la definición de los patrones de cristal fotónico y utiliza técnicas de grabado húmedo y seco. Nuestros resultados optimizados receta de fabricación de cristales fotónicos que no sufren de asimetría vertical y exhiben muy buena borde de pared rugosidad. Se discuten los resultados de la variación de los parámetros de grabado y los efectos perjudiciales que pueden tener en un dispositivo, que conduce a una ruta de diagnóstico que se pueden tomar para identificar y eliminar problemas similares.

La clave para la evaluación de guías de ondas lentas de luz es la caracterización pasiva de transmisión y los espectros de índice de grupo. Varios métodos han sido reportados, lo más notablemente la resolución de las franjas de Fabry-Perot del espectro de transmisión de un 20-21técnicas de interferometría. 22-25 d A continuación, describimos una técnica directa, la medición de banda ancha combinando la interferometría espectral con el análisis de Fourier transform. 26 Nuestro método destaca por su sencillez y potencia, como se puede caracterizar un cristal fotónico desnudo con guías de ondas de acceso, sin necesidad para los componentes de interferencia en el chip, y la configuración de la única consiste en un interferómetro de Mach-Zehnder, sin necesidad de partes móviles y escáneres de retardo.

En la caracterización de las cavidades de cristal fotónico, las técnicas que implican fuentes internas 21 o guías de onda externos acoplados directamente a la cavidad 27 impacto en el rendimiento de la propia cavidad, distorsionando así la medición. Aquí se describe una técnica novedosa y no intrusivo que hace uso de un haz de sonda de polarización cruzada y se conoce como dispersión resonante (RS), donde la sonda se acopla fuera del plano en la cavidad a través de un objetivo. La técnica fue la primera demostracióndo por McCutcheon et al. 28 y desarrollado por Galli et al 29.

Protocol

Descargo de responsabilidad: La siguiente protocolo proporciona un flujo de proceso general que abarca las técnicas de fabricación y caracterización de guías de onda cristalina fotónica y cavidades. El flujo de proceso está optimizado para el equipo específico disponible en nuestro laboratorio, y los parámetros pueden ser diferentes si otros reactivos o equipo se utiliza. 1. Preparación de la muestra La escisión de la muestra – la toma de silicio sobre a…

Representative Results

Fabricated samples Figure 1 shows a scanning electron microscope (SEM) image of an exposed and developed pattern in electron beam resist – it is evident from the “clean” edge between the resist and the silicon substrate that complete exposure/development has been accomplished. Exposure of dose test patterns, consisting of simple repeated shapes (in our case 50 × 50 μm squares), each with a differing base dose, are used to determine the correct dose factor and developmen…

Discussion

Ejemplo de fabricación

Nuestra elección de haz de electrones resistir (es decir ZEP 520A) se debe a su alta resolución simultáneamente y resistencia a la corrosión. Creemos que 520A ZEP puede verse afectada por la luz UV emitida por las luces de laboratorio generales; como tal se recomienda colocar recubiertos spin-muestras en recipientes opacos UV mientras que se muevan de un laboratorio a otro.

Pasando a definir el patrón de cristal fotónico, antes…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Los autores agradecen Dr Matteo Galli, el Dr. Simone L. Portalupi y el Prof. Lucio C. Andreani, de la Universidad de Pavia útil para los debates relacionados con la técnica de RS y la ejecución de las medidas.

Materials

Name Company Catalogue number Comments (optional)
Acetone Fisher Scientific A/0520/17 CAUTION: flammable, use good ventilation and avoid all ignition sources.
Isopropanol Fisher Scientific P/7500/15 CAUTION: flammable, use good ventilation and avoid all ignition sources.
Electron Beam resist Marubeni Europe plc. ZEP520A CAUTION: flammable, harmful by inhalation, avoid contact with skin and eyes.
Xylene Fisher Scientific X/0100/17 CAUTION: flammable and highly toxic, use good ventilation, avoid all ignition sources, avoid contact with skin and eyes.
Microposit S1818 G2 Chestech Ltd. 10277866 CAUTION: flammable and causes irritation to eyes, nose and respiratory tract.
Microposit Developer MF-319 Chestech Ltd. 10058721 CAUTION: alkaline liquid and can cause irritation to eyes, nose and respiratory tract.
Hydrofluoric Acid Fisher Scientific 22333-5000 CAUTION: extremely corrosive, readily destroys tissue; handle with full personal protective equipment rated for HF.
Microposit 1165 Remover Chestech Ltd. 10058734 CAUTION: flammable and causes irritation to eyes, nose and respiratory tract.
Sulphuric Acid Fisher Scientific S/9120/PB17 CAUTION: corrosive and very toxic; handle with personal protective equipment and avoid inhalation of vapours or mists.
Hydrogen Peroxide Fisher Scientific BPE2633-500 CAUTION: very hazardous in case of skin and eye contact; handle with personal protective equipment.
      Equipment
Silicon-on-Insulator wafer Soitec G8P-110-01  
Diamond Scribe J & M Diamond Tool Inc. HS-415  
Microscope slides Fisher Scientific FB58622  
Beakers Fisher Scientific FB33109  
Tweezers SPI Supplies PT006-AB  
Ultrasonic Bath Camlab 1161436  
Spin-Coater Electronic Micro Systems Ltd. EMS 4000  
Pipette Fisher Scientific FB55343  
E-beam Lithography System Raith Gmbh Raith 150  
Reactive Ion Etching System Proprietary In-house Designed  
UV Mask Aligner Karl Suss MJB-3  
ASE source Amonics ALS-CL-15-B-FA CAUTION: invisible IR radiation.
Single mode fibers Thorlabs P1-SMF28E-FC-2  
3 dB fiber splitters Thorlabs C-WD-AL-50-H-2210-35-FC/FC  
Aspheric lenses New Focus 5720-C  
XYZ stages Melles Griot 17AMB003/MD  
Polarizing beamsplitter cube Thorlabs PBS104  
IR detector New Focus 2033  
100× Objective Nikon BD Plan 100x  
Oscilloscope Tektronix TDS1001B  
Optical Spectrum Analyzer Advantest Q8384  
IR sensor card Newport F-IRC2  
TLS source Agilent 81940A CAUTION: invisible IR radiation.
IR Camera Electrophysics 7290A  
IR Detector New Focus 2153  
Digital Multimeter Agilent 34401A  
Illumination Stocker Yale Lite Mite  
Monochromator Spectral Products DK480  
Array Detector Andor DU490A-1.7  
GIF Fiber Thorlabs 31L02  

References

  1. Baba, T., Kawasaki, T., Sasaki, H., Adachi, J., Mori, D. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. Opt. Express. 16 (12), 9245-9253 (2008).
  2. Melloni, A., Canciamilla, A., et al. Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison. IEEE Photon. J. 2 (2), 181-194 (2010).
  3. Ishikura, N., Baba, T., Kuramochi, E., Notomi, M. Large tunable fractional delay of slow light pulse and its application to fast optical correlator. Opt. Express. 19 (24), 24102-24108 (2011).
  4. Beggs, D. M., Rey, I. H., Kampfrath, T., Rotenberg, N., Kuipers, L., Krauss, T. F. Ultrafast tunable optical delay line based on indirect photonic transitions. Phys. Rev. Lett. 108 (21), 213901 (2012).
  5. Beggs, D. M., White, T. P., O’Faolain, L., Krauss, T. F. Ultracompact and low-power optical switch based on silicon photonic crystals. Opt. Lett. 33 (2), 147-149 (2008).
  6. Nguyen, H. C., Sakai, Y., Shinkawa, M., Ishikura, N., Baba, T. 10 Gb/s operation of photonic crystal silicon optical modulators. Opt. Express. 19 (14), 13000-13007 (1364).
  7. Kampfrath, T., Beggs, D. M., White, T. P., Melloni, A., Krauss, T. F., Kuipers, L. Ultrafast adiabatic manipulation of slow light in a photonic crystal. Phys. Rev. A. 81 (4), 043837 (2010).
  8. Monat, C., Corcoran, B., et al. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Opt. Express. 17 (4), 2944-2953 (2009).
  9. Corcoran, B., Monat, C., et al. light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nature Photon. 3, 206-210 (2009).
  10. Li, J., O’Faolain, L., Rey, I. H., Krauss, T. F. Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations. Opt. Express. 19 (5), 4458-4463 (2010).
  11. Checoury, X., Han, Z., Boucaud, P. Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation. Phys. Rev. B. 82 (4), 041308 (2010).
  12. Y, Photonic crystal nanocavity laser with a single quantum dot gain. Opt. Express. 17 (18), 15975-15982 (2009).
  13. Ellis, B., Mayer, M. A., et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nature Photon. 24, 297-300 (2011).
  14. Galli, M., Gerace, D., et al. Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities. Opt. Express. 18 (25), 26613-26624 (2010).
  15. Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E., Tanabe, T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express. 13 (7), 2678-2687 (2005).
  16. Shambat, G., Rivoire, K., Lu, J., Hatami, F., Vučkovič, J. Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers. Opt. Express. 18 (12), 12176-12184 (2010).
  17. Fan, S., Villeneuve, P. R., Joannopoulos, J. D., Haus, H. A. Channel drop filters in photonic crystals. Opt. Express. 3 (1), 4-11 (1998).
  18. Tanabe, T., Nishiguchi, K., Kuramochi, E., Notomi, M. Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity. Opt. Express. 17 (25), 22505-22513 (2009).
  19. Nozaki, K., Tanabe, T., et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photon. 4, 477-483 (2010).
  20. Notomi, M., Yamada, K., Shinya, A., Takahashi, J., Takahashi, C., Yokohama, I. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87 (25), 253902 (2001).
  21. Labilloy, D., Benisty, H., Weisbuch, C., Smith, C. J. M., Krauss, T. F., Houdré, R., Oesterle, U. Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots. Phys. Rev. B. 59 (3), 1649-1652 (1999).
  22. Inanç Tarhan, I., Zinkin, M. P., Watson, G. H. Interferometric technique for the measurement of photonic band structure in colloidal crystals. Opt. Lett. 20 (14), 1571-1573 (1995).
  23. Galli, M., Marabelli, F., Guizzetti, G. Direct measurement of refractive-index dispersion of transparent media by white-light interferometry. Appl. Opt. 42 (19), 3910-3914 (1364).
  24. Galli, M., Bajoni, D., Marabelli, F., Andreani, L. C., Pavesi, L., Pucker, G. Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry. Phys. Rev. B. 69 (11), 115107 (2004).
  25. Vlasov, Y. A., O’Boyle, M., Hamann, H. F., McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature. 438, 65-69 (2005).
  26. Gomez-Iglesias, A., O’Brien, D., O’Faolain, L., Miller, A., Krauss, T. F. Direct measurement of the group index of photonic crystal waveguide via Fourier transform spectral interferometry. Appl. Phys. Lett. 90 (26), 261107 (2007).
  27. Akahane, Y., Asano, T., Song, B. -. S., Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature. 425, 944-947 (2003).
  28. McCutcheon, M. W., Rieger, G. W., et al. Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities. Appl. Phys. Lett. 87 (22), 221110 (2005).
  29. Galli, M., Portalupi, S. L., Belotti, M., Andreani, L. C., O’Faolain, L., Krauss, T. F. Light scattering and Fano resonances in high-Q photonic crystal nanocavities. Appl. Phys. Lett. 94 (7), 71101 (2009).
  30. WÃest, R., Strasser, P., Jungo, M., Robin, F., Erni, D., Jückel, H. An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices. Microelectron Eng. 67-68, 182-188 (2003).
  31. Tanaka, Y., Asano, T., Akahane, Y., Song, B. -. S., Noda, S. Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes. Appl. Phys. Lett. 82 (11), 1661 (2003).
  32. Asano, T., Song, B. -. S., Noda, S. Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities. Opt. Express. 14 (5), 1996-2002 (2006).
  33. O’Faolain, L., Schulz, S. A., et al. Loss engineered slow light waveguides. Opt. Express. 18 (26), 27627-27638 (2010).
  34. Joannopoulos, J. D., Johnson, S. G., Winn, J. N., Meade, R. D. . Photonic crystals, molding the flow of light. , (2008).
  35. Li, J., White, T. P., O’Faolain, L., Gomez-Iglesias, A., Krauss, T. F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express. 16 (9), 6227-6232 (2008).
  36. Takeda, M., Ina, H., Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72 (1), 156-160 (1982).

Play Video

Cite This Article
Reardon, C. P., Rey, I. H., Welna, K., O’Faolain, L., Krauss, T. F. Fabrication And Characterization Of Photonic Crystal Slow Light Waveguides And Cavities. J. Vis. Exp. (69), e50216, doi:10.3791/50216 (2012).

View Video