У животных с большими определены нейронов (<em> Например,</em> Моллюски), анализ двигатель бассейнов осуществляется с помощью внутриклеточных методы<sup> 1,2,3,4</sup>. Недавно мы разработали методику, чтобы стимулировать внеклеточно и записывать отдельные нейроны в<em> Aplysia саЩогтса</em<sup> 5</sup>. Опишем протокол для использования этого метода, чтобы однозначно определить и охарактеризовать моторных нейронов в бассейне двигателя.
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool.
This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations.
To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons.
We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
У животных с большими определены нейронов, таких как моллюски (например, Lymnaea, Helix, и Aplysia), анализ двигатель бассейны, как правило, осуществляется с помощью внутриклеточной регистрации 1,2,3,4. В этом протоколе, мы опишем процесс для уникальной идентификации моторных нейроно…
The authors have nothing to disclose.
Это исследование было поддержано грантом NS047073 NIH и NSF гранта DMS1010434.
Name | Company | Catalog Number | Comments |
Sodium chloride | Fisher Scientific | S671 | Biological, Certified |
Potassium chloride | Fisher Scientific | P217 | Certified ACS |
Magnesium chloride hexahydrate | Acros Organics | 19753 | 99% |
Magnesium sulfate heptahydrate | Fisher Scientific | M63 | Certified ACS |
Calcium chloride dihydrate | Fisher Scientifc | C79 | Certified ACS |
Glucose (dextrose) | Sigma-Aldrich | G7528 | BioXtra |
MOPS buffer | Acros Organics | 17263 | 99% |
Carbachol | Acros Organics | 10824 | 99% |
Sodium hydroxide | Fisher Scientific | SS255 | Certified |
Hydrochloric acid | Fisher Scientific | SA49 | Certified |
Single-barreled capillary glass | A-M Systems | 6150 | |
Flaming-Brown micropipette puller model P-80/PC | Sutter Instruments | Filament used: FT345B | |
Enamel coated stainless steel wire | California Fine Wire | 0.001D, coating h | |
Household Silicone II Glue | GE | ||
Duro Quick-Gel superglue | Henkel corp. | ||
A-M Systems model 1700 amplifier | A-M Systems | Filter settings: 10-500 Hz for the I2 nerve/muscle; 300-500 Hz for all the other nerves | |
Pulsemaster Multi-Channel Stimulator | World Precision Instruments | A300 | |
Stimulus Isolator | World Precision Instruments | A360 | |
AxoGraph X | AxoGraph Scientific | Software for recordings | |
Gold Connector Pins | Bulgin | SA3148/1 | |
Gold Connector Sockets | Bulgin | SA3149/1 | |
Sylgard 184 Silicone Elastomer | Dow Corning | ||
100 x 15 mm Crystalizing Dish | Pyrex | ||
High Vacuum Grease | Dow Corning | ||
Pipet Tips | Fisher Scientific | 21-375D | |
Minutien Pins | Fine Science Tools | 26002-10 | |
Modeling Clay | Sargent Art | 22-4400 | |
Whisper Air Pump | Tetra | 77849 | |
Aquarium Tubing | Eheim | 7783 | 12/16 mm |
Elite Airstone | Hagen | A962 | |
Vannas Spring Scissors | Fine Science Tools | 15000-08 | |
Dumont #5 Fine Forceps | Fine Science Tools | 11254-20 | |
Kimwipes | Kimberly-Clark | 34155 |