Summary

转基因小鼠内耳的发展<em>在体内</em>电穿孔

Published: June 30, 2012
doi:

Summary

在小鼠内耳是一个基板派生的感觉器官,在妊娠期间阐述其发展计划。我们定义一个<em>在子宫内</em>转基因技术包括三个步骤:鼠标腹剖腹,transuterine显微注射,<em>在体内</em>电。我们用数字视频显微镜演示实验胚胎学技术关键。

Abstract

哺乳动物的内耳有6个不同的感觉上皮:3个半规管壶腹嵴,椭圆囊和球囊斑;科尔蒂在连续耳蜗器官。包含前庭毛细胞转导机械刺激到…有特殊意义的平衡,而在Corti器的听觉毛细胞是听觉1主传感器的嵴和斑疹。这些感觉上皮细胞的半规管和耳蜗形态的命运规范期间在小鼠妊娠的第二个星期的地方,主要是在出生前2,3完成。小鼠内耳发育研究的收获转基因胚胎在不同的胚胎或产后阶段,要进入细胞和/或4,5形态表型的分子基础的洞察力,要定期进行。我们推测这种基因转移到发展中国家鼠标在子宫内的内耳</ EM代表>中的收益和亏损的功能研究方面免费的方法,以传统的鼠标转基因哺乳动物的内耳发育6背后的遗传机制的审讯。

这里展示的实验范式进行基因在小鼠内耳的错误表达研究解决分为三个一般步骤:1)腹开腹手术; 2)transuterine的显微注射; 3) 在体内电穿孔。腹的剖腹手术是老鼠生存的手术技术,允许子宫外化,获得实验获得的植入胚胎7。 transuterine显微注射法是利用斜面,玻璃毛细管微电极引入进入管腔耳泡或otocyst表达质粒在体内的电是方波,直接驶入祖细胞8-10表达质粒的电流脉冲应用。

<p cl屁股=的“jove_content”我们先前所描述的此电为基础的基因转移技术的协议11日的每一步,包括详细的笔记。小鼠实验胚胎学的技术可能难以学习的散文和静止图像单独。在目前的工作中,我们证明在基因转移过程中的3个步骤。最关键的是,我们部署数字视频显微镜,如何准确显示:1)确定胚胎在子宫内方向; 2)重新调整针对注射的otocyst,胚胎; 3)microinject示踪染料溶液到otocyst混合胚胎11.5天的DNA 12.5; 4)electroporate注入otocyst;和5)产后选择出生在标签电穿孔胚胎。我们提供有代表性的例子,成功转染内耳;图案指南otocyst误炸最常见的原因,讨论如何避免常见的方法错误;写在宫内 Ğ本准则烯转移动物保健协议。

Protocol

1。腹剖腹麻醉的大坝,其胚胎在胚胎每天11.5(E11.5;阴道插件检测当天中午是胚胎发育0.5天),是由腹腔注射戊巴比妥钠麻醉剂溶液(每克体重7.5μL)。工作麻醉剂:50毫克/毫升巴比妥钠溶液180μL,100μL无水乙醇320μL65毫克/毫升的水硫酸镁(调节子宫张力);丙二醇和400μL(车辆混溶与水和有机组件)。 评估麻醉的完整性进行伤害性刺激试验:脸颊和触须触摸爪子挤压尾巴捏和眨眼?…

Discussion

发展中国家小鼠内耳的基因转移到小鼠内耳耳基板的发展过程中的发展12,13植入后的第一周。由胚胎9.5天(E9.5),基板已内陷,并演变成一个充满液体的囊泡称为otocyst 2。在泡耳前兆引起成熟内耳内感官和nonsensory的细胞以及神经元支配的前庭和听觉的感觉上皮细胞的机械敏感的毛细胞。年底前胚胎阶段,复杂的,三 ​​维的膜迷路内耳形态成立3,12。通常增?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢权限发布参考11日第130页上的最初出现的显微注射吸管制造图Humana压; Dlugas拉里和史蒂芬黄,OHSU的教育通信部,录像;拉里Dlugas为视频设计和编辑;亚当M.Ø “奎因,高级设计师,钛师傅/ Envirco公司提供的技术原理设计我们自定义的水平层流罩和Les高士指导维克多Monterroso,MV中,硕士,博士和汤姆Chatkupt的数字电压表,OHSU的比较医学部,与我们的动物保健协议,手术技巧,以及预防性镇痛方案;马塞尔·佩雷让蒂尔,数字电压表,硕士,兽医缝合技术分享他的讲义;爱德华Porsov,MS,设计我们的Adobe Premiere Pro中的视频显微镜的计算机工作站及利亚白乔纳斯LNS的欣克利字幕(波特兰,OR)。这项工作得到了耳聋和行吟从国家研究所的赠款R通讯障碍:以R01直流008595和008595-04S2直流以R01(山)和P30 DC005983(俄勒冈州听力研究中心核心格兰特,彼得·吉莱斯皮,首席研究员)。

Materials

Name of the reagent Company Catalogue number Comments
Micro Sterilizing Case ROBOZ RS-9900a 8X8.5X1.25 inches
Ball-tipped scissors Fine Science Tools 14109-09  
Ring forceps Fine Science Tools 11106-09 4.8mm ID/6mm OD
Adson Tissue Forceps Fine Science Tools 11027-12  
Needle driver Fine Science Tools 12502-12  
Allergy Syringe Tray Becton Dickison 305536  
Suture 6-0 Syneture GL-889 0.7 metric gastrointestinal suture
Lactated Ringer’s Injection USP Baxter 2B2323  
Fast green Sigma Aldrich F7258  
Borosilicate glass capillary Harvard Apparatus 30-0053  
Nembutal Sodium Solution OVATION Pharmaceuticals Inc. NDC 67386-501-52  
MgSO4.7H2O Fisher Scientific M63-500  
Propylene glycol Fisher Scientific P355-1  
Ethanol Sigma Aldrich E7023-500  
Meloxicam Boehringer Ingeheim NADA 141-219  
Micropipette Puller Sutter Instruments P-97 FB255B box filament; consult Pipette Cookbook from Sutter instruments
Microelectrode Beveler Sutter Instruments BV-10 104C beveling disk for large pipettes; consult owner’s manual for beveling theory
Micropipette holder Warner Instruments MP-S15T For 1.5mm outer diameter pipette and female pressure port for Picospritzer tubing.
Tweezers-style electrode Protech International Inc. CUY650P5 5 mm outer diameter
Square Wave Electroporator Protech International Inc. CUY21EDIT Footpedal recommended
PICOSPRITZER III Parker Hannifin 051-0500-900 Footpedal recommended
Manual Control Micromanipulator Harvard Apparatus 640056  
Horizontal laminar flow clean bench Envirco   Custom modifications to LF 630-10554. See supplementary information for hood schematic.
Leica stereofluorescence dissecting microcope with Lumencor SOLA light engine Bartels and Stout and Lumencor MZ10F with Lumencor SOLA light engine Footpedals to focus the MZ10F and to trigger the SOLA light engine are recommended
Alexa Fluor 594 Dextran Invitrogen D22913 10mg/ml, aqueous
Alexa Fluor 488 Dextran Invitrogen D22910 10mg/ml, aqueous
Enviro-dri Shepherd Specialty Papers   www.ssponline.com

References

  1. Gillespie, P. G., Muller, U. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell. 139, 33-44 (2009).
  2. Bok, J., Chang, W., Wu, D. K. Patterning and morphogenesis of the vertebrate inner ear. Int. J. Dev. Biol. 51, 521-533 (2007).
  3. Kelley, M. W. Regulation of cell fate in the sensory epithelia of the inner ear. Nat. Rev. Neurosci. 7, 837-849 (2006).
  4. Ohyama, T. BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. J. Neurosci. 30, 15044-15051 (2010).
  5. Pan, W., Jin, Y., Stanger, B., Kiernan, A. E. Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc. Natl. Acad. Sci. U.S.A. 107, 15798-15803 (2010).
  6. Gubbels, S. P., Woessner, D. W., Mitchell, J. C., Ricci, A. J., Brigande, J. V. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature. 455, 537-541 (2008).
  7. . . Guide for the Care and Use of Laboratory Animals. , (2010).
  8. Matsuda, T., Cepko, C. L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl. Acad. Sci. U.S.A. 104, 1027-1032 (2007).
  9. Chen, C., Smye, S. W., Robinson, M. P., Evans, J. A. Membrane electroporation theories: a review. Med. Biol. Eng. Comput. 44, 5-14 (2006).
  10. Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552-1558 (2006).
  11. Brigande, J. V., Gubbels, S. P., Woessner, D. W., Jungwirth, J. J., Bresee, C. S. Electroporation-mediated gene transfer to the developing mouse inner ear. Methods Mol. Biol. 493, 125-139 (2009).
  12. Morsli, H., Choo, D., Ryan, A., Johnson, R., Wu, D. K. Development of the mouse inner ear and origin of its sensory organs. J. Neurosci. 18, 3327-3335 (1998).
  13. Sher, A. E. The embryonic and postnatal development of the inner ear of the mouse. Acta. Otolaryngol. , 1-77 (1971).
  14. Sheffield, A. M. Viral vector tropism for supporting cells in the developing murine cochlea. Hear Res. 277, 28-36 (2011).
  15. Bedrosian, J. C. In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. Mol. Ther. 14, 328-335 (2006).
  16. Reisinger, E. Probing the functional equivalence of otoferlin and synaptotagmin 1 in exocytosis. J. Neurosci. 31, 4886-4895 (2011).
  17. Magnani, E., Bartling, L., Hake, S. From Gateway to MultiSite Gateway in one recombination event. BMC Mol. Biol. 7, 46 (2006).
  18. Perret-Gentil, M. . Principles of Veterinary Suturing. , .
  19. Oesterle, A. . P-1000 & P-97 Pipette Cookbook. , (2011).

Play Video

Cite This Article
Wang, L., Jiang, H., Brigande, J. V. Gene Transfer to the Developing Mouse Inner Ear by In Vivo Electroporation. J. Vis. Exp. (64), e3653, doi:10.3791/3653 (2012).

View Video