Herein we describe the methods to construct, visualize, and quantify the bioluminescent reactions of both firefly and renilla luciferase enzymes expressed in metastatic breast cancer cells during their growth and metastasis in vivo.
Our understanding of how and when breast cancer cells transit from established primary tumors to metastatic sites has increased at an exceptional rate since the advent of in vivo bioluminescent imaging technologies 1-3. Indeed, the ability to locate and quantify tumor growth longitudinally in a single cohort of animals to completion of the study as opposed to sacrificing individual groups of animals at specific assay times has revolutionized how researchers investigate breast cancer metastasis. Unfortunately, current methodologies preclude the real-time assessment of critical changes that transpire in cell signaling systems as breast cancer cells (i) evolve within primary tumors, (ii) disseminate throughout the body, and (iii) reinitiate proliferative programs at sites of a metastatic lesion. However, recent advancements in bioluminescent imaging now make it possible to simultaneously quantify specific spatiotemporal changes in gene expression as a function of tumor development and metastatic progression via the use of dual substrate luminescence reactions. To do so, researchers take advantage for two light-producing luciferase enzymes isolated from the firefly (Photinus pyralis) and sea pansy (Renilla reniformis), both of which react to mutually exclusive substrates that previously facilitated their wide-spread use in in vitro cell-based reporter gene assays 4. Here we demonstrate the in vivo utility of these two enzymes such that one luminescence reaction specifically marks the size and location of a developing tumor, while the second luminescent reaction serves as a means to visualize the activation status of specific signaling systems during distinct stages of tumor and metastasis development. Thus, the objectives of this study are two-fold. First, we will describe the steps necessary to construct dual bioluminescent reporter cell lines, as well as those needed to facilitate their use in visualizing the spatiotemporal regulation of gene expression during specific steps of the metastatic cascade. Using the 4T1 model of breast cancer metastasis, we show that the in vivo activity of a synthetic Smad Binding Element (SBE) promoter was decreased dramatically in pulmonary metastasis as compared to that measured in the primary tumor 4-6. Recently, breast cancer metastasis was shown to be regulated by changes within the primary tumor microenvironment and reactive stroma, including those occurring in fibroblasts and infiltrating immune cells 7-9. Thus, our second objective will be to demonstrate the utility of dual bioluminescent techniques in monitoring the growth and localization of two unique cell populations harbored within a single animal during breast cancer growth and metastasis.
The absolute power of bioluminescent imaging techniques lies in their ability to quantify tumor growth and metastasis in complex longitudinal studies, which herein involved the use of aggressive 4T1 breast cancer cells. Because these procedures rely on the stable integration of both luciferase reporter constructs, these techniques can be readily adapted and translated to other cancer cell lines of varying tumor latencies and metastatic capabilities. Similar to the results shown herein, calculating specific RLRs within slowly developing primary tumors and their eventual metastases allows for the real-time spatiotemporal identification of specific signaling events that transpire during the metastatic progression of tumors irrespective of their duration of latency. Upon identification of specific promoter regulatory events, it is important to excise both the primary tumor and its metastatic lesions for the performance of standard immunohistochemical and differential gene expression analyses to verify similar regulation of the endogenous gene and/or protein.
Technically speaking, the primary challenge of dual bioluminescent analyses lies in the relatively short duration of the renilla luciferase signals. As such, this imaging technique requires significant optimization of the tail vein injection procedure, as well as the immediate imaging of individually injected animals, a process that is time consuming and somewhat inefficient relative to imaging firefly luciferase. Recently, Promega introduced “Viviren,” which represents a second generation luciferase substrate whose sites of oxidation are blocked by esterification until this molecule gains entry into cells, at which point the molecule is rapidly de-esterified. Collectively, this novel substrate effectively lowers auto-luminescence and nonspecific modification and/or degradation coupled to renilla-induced auto-luminescence 12. In doing so, this new renilla luciferase substrate produces brighter luminescent signals; however, the excessive costs associated with the acquisition and use of “Viviren” have provided relatively few studies necessary to evaluate the overall utility of this substrate in dual bioluminescent analyses. Finally, the sensitivity of any bioluminescent assay is critically dependent upon the CCD camera operant in acquiring individual light units. Indeed, as these technologies improve, we foresee a point in the future where our ability to visualize complex light-mediated bioluminescent reactions may transpire efficiently in free moving animals 13.
The authors have nothing to disclose.
W.P.S. was supported in part by grants from the National Institutes of Health (CA129359), the Susan G. Komen for the Cure Foundation (BCTR0706967), the Department of Defense (BC084561), and the Seidman Cancer Center, while M.K.W. was supported by a fellowship from the American Cancer Society (PF-09-120-01). Additional support for this work was provided by the Case Center for Imaging Research, the Case Comprehensive Cancer Center (P30 CA43703), and the Cystic Fibrosis Center (P30 DK027651).
Name of reagent | Company | Catalogue number |
---|---|---|
pGL4.2-Puro [luc2/Puro] Vector | Promega | E6751 |
Glomax Mult-idection system | Promega | |
IVIS 200 series | Caliper Life Sciences | |
Dual luciferase reporter Assay system | Promega | E1960 |
Rediject coelenterazine-h | Caliper Life Sciences | 760506 |
D-Luciferin K-Salt | Caliper Life Sciences | 122796 |