A flexible and efficient method for the characterization of cell type-specific protein localization and nucleocytoplasmic shuttling is described. This heterokaryon approach uses fluorescently-labeled fusion proteins to image protein localizations after cell fusion. The protocol is amenable to steady-state localizations or more dynamic determinations based on live cell imaging.
A significant number of proteins are regulated by subcellular trafficking or nucleocytolasmic shuttling. These proteins display a diverse array of cellular functions including nuclear import/export of RNA and protein, transcriptional regulation, and apoptosis. Interestingly, major cellular reorganizations including cell division, differentiation and transformation, often involve such activities3,4,8,10. The detailed study of these proteins and their respective regulatory mechanisms can be challenging as the stimulation for these localization changes can be elusive, and the movements themselves can be quite dynamic and difficult to track. Studies involving cellular oncogenesis, for example, continue to benefit from understanding pathways and protein activities that differ between normal primary cells and transformed cells6,7,11,12. As many proteins show altered localization during transformation or as a result of transformation, methods to efficiently characterize these proteins and the pathways in which they participate stand to improve the understanding of oncogenesis and open new areas for drug targeting.
Here we present a method for the analysis of protein trafficking and shuttling activity between primary and transformed mammalian cells. This method combines the generation of heterokaryon fusions with fluorescence microscopy to provide a flexible protocol that can be used to detect steady-state or dynamic protein localizations. As shown in Figure 1, two separate cell types are transiently transfected with plasmid constructs bearing a fluoroprotein gene attached to the gene of interest. After expression, the cells are fused using polyethylene glycol, and protein localizations may then be imaged using a variety of methods. The protocol presented here is a fundamental approach to which specialized techniques may be added.
1. Transfection of Cell Lines
Transfection Method 1
(Lonza Nucleofection for increased primary cell transfection efficiency)
Transfection Method 2
(Qiagen Effectene transfection for cell lines)
2. Cell Fusion
Fluorescence Microscopy
3. Representative Results
Figure 2 shows an example heterokaryon experiment using primary fibroblasts and H1299 non-small cell lung carcinoma cells. The protein of interest in this experiment (Chicken Anemia Virus-VP3) displays primarily cytoplasmic localization in primary cell types and nuclear localization in transformed cell types as visualized by epifluorescence microscopy. The protein is expressed as a fusion to either GFP (pEGFP-N1 vector, Clontech) in primary foreskin fibroblasts (PFF) or dsRed (dsRed-N1 vector, Clontech) in H1299 cells. Control samples involving self-fusions (top two rows) display multinucleated cells with no change in steady-state localization patterns. Such changes could otherwise occur due to sensitivity to fusion conditions or the formation of syncitia. Heterokaryon fusions (bottom row) demonstrate nuclear entry of the GFP-fused primary cell-derived protein and colocalization with the dsRed-fused protein in response to the introduction of transformed cell material. The example shown is a relatively rare heterokaryon fusion resulting from only two cells, one of each type, as demonstrated by the presence of both fluoroprotein signals. In addition to detecting these types of localization transitions, nucleocytoplasmic shuttling activity can be easily detected by the presence of a single fluorophore in both nuclei. This type of determination is clear when examining 1:1 cell fusions and would depend on inhibition of translation.
Figure 1. Flow chart of the heterokaryon method using primary fibroblasts and H1299 non-small cell carcinoma cells. The gene of interest is cloned to produce an in-frame fusion to one of two fluorescent protein genes. Cell lines are then transiently transfected with either construct and allowed to recover. Heterokaryon formation is induced by brief treatment with polyethylene glycol (PEG) followed by further incubation. Finally, the sub-cellular localization of the protein of interest is observed using various forms of fluorescent microscopy.
Figure 2. Nucleocytoplasmic trafficking and shuttling activity of the Chicken Anemia Virus VP3 protein visualized by heterokaryon fusion. Top row: Representative images of self-fused H1299 cells expressing dsRed-VP3. Middle row: Representative epifluorescence images of primary foreskin fibroblast cells (PFF) expressing GFP-VP3 after PEG fusion. Bottom row: Heterokaryon fusion of PFF and H1299 cells. Yellow indicates colocalization of GFP and dsRed signals. Cells were imaged using a Leica AF6000E fluorescence microscope and Leica imaging software.
The heterokaryon protocol presented here provides an efficient and easily interpretable method for the characterization of cell type-specific localization behavior as well as nucleocytoplasmic shuttling activity. This method takes advantage of the sensitivity of fluorescence analysis as well as the ability to image live cells and perform studies of protein dynamics. The technique is easily adapted for many different cell types and is amenable to both live and fixed cell imaging. For example, inverted fluorescence microscopy can be used for live imaging and time lapse video capture. By contrast, mounted cells may be used in either epifluorescence microscopy for determination of steady-state localizations or more detailed confocal imaging of discrete localizations. Moreover, techniques such as fluorescence recovery after photobleaching (FRAP), or fluorescence loss in photobleaching (FLIP) can be used in the determination of localization kinetics1. The incorporation of alternate fluorophores in the protocol would allow for protein interaction experiments such as fluorescence resonance energy transfer (FRET) to be conducted in concert2. Various inhibitors of cellular trafficking such as leptomycin B or dominant negative Ran GTPase constructs can be used to establish dependence on particular import or export pathways5,6,9.
The authors have nothing to disclose.
We would like to thank the Worcester Polytechnic Institute Department of Chemistry and Biochemistry for funding.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
Effectene reagent | Qiagen | 301425 | ||
Phosphate buffered saline (PBS) | Sigma-Aldrich | P5493 | ||
Trypsin | Fisher | SH3023602 | ||
Dulbecco’s modified Eagle’s medium (DMEM) | Fisher | SH30243FS | High glucose | |
paraformaldehyde | FisherChemical | O4042-500 | ||
4’,6-diamidino-2-phenylindole (DAPI) | Sigma-Aldrich | D9542-10MG | ||
Hyclone Serum (fetal bovine) | Thermo Scientific | SH3008803HI | ||
Falcon 6-well plates | Fisher | 08-772-1B | ||
Polyethylene glycol 1000 | Fisher | 528875-25GM | ||
Cover slips | Fisher | 12-545-85 | ||
DABCO | Sigma-Aldrich | D2522-25G | ||
Nucleofector HDF kit | Lonza | VPD-1001 |