Source: Iredale, J. A., et al. Recording Network Activity in Spinal Nociceptive Circuits Using Microelectrode Arrays. J. Vis. Exp. (2022).
This video demonstrates a microelectrode array-based assay for studying neuronal network activity in mouse spinal cord sections. First, the electrophysiological activity from the superficial dorsal horn (SDH) of the slice is recorded. Then, a potassium channel inhibitor is introduced to prolong depolarization, resulting in synchronous rhythmic activity across the neuronal network.
All procedures involving sample collection have been performed in accordance with the institute's IRB guidelines.
1. In vitro electrophysiology
2. Sucrose-substituted artificial cerebrospinal fluid
NOTE: Sucrose-substituted aCSF is used during dissection and spinal cord slicing. As indicated by the name, sucrose is substituted for NaCl to reduce neuronal excitation during these procedures while maintaining osmolarity. See Table 1 for the detailed composition.
3. Microelectrode array preparation
NOTE: The contact surface of the MEA requires a pretreatment to make it hydrophilic.
4. Acute spinal cord slice preparation
5. Microelectrode array recordings
NOTE: The following steps detail how to use record data from MEA-based experiments on spinal cord slices. Several MEA designs can be used depending on the experiment. Design details for MEAs used in these experiments are shown in Table 2 and Figure 2. Detailed design information has been published by Egert et al. and Thiebaud et al. for planar and 3-dimensional (3D) MEAs, respectively. Both MEA types are composed of 60 titanium nitride electrodes, with a silicon nitride insulating layer and titanium nitride tracks and contact pads.
Table 1: Artificial Cerebrospinal Fluid compositions.
Chemical | aCSF (mM) | aCSF (g/100 mL) | Sucrose-substituted aCSF (mM) | Sucrose-substituted aCSF (g/100 mL) | High-potassium aCSF (mM) | High-potassium aCSF (g/100 mL) |
Sodium chloride (NaCl) | 118 | 0.690 | – | – | 118 | 0.690 |
Sodium hydrogen carbonate (NaHCO3) | 25 | 0.210 | 25 | 0.210 | 25 | 0.210 |
Glucose | 10 | 0.180 | 10 | 0.180 | 10 | 0.180 |
Potasium chloride (KCl) | 2.5 | 0.019 | 2.5 | 0.019 | 4.5 | 0.034 |
Sodium dihydrogen phosphate (NaH2PO4) | 1 | 0.012 | 1 | 0.012 | 1 | 0.012 |
Magnesium cloride (MgCl2) | 1 | 0.01 | 1 | 0.01 | 1 | 0.01 |
Calcium chloride (CaCl2) | 2.5 | 0.028 | 2.5 | 0.028 | 2.5 | 0.028 |
Sucrose | – | – | 250 | 8.558 | – | – |
Table 2: Microelectrode array layouts.
Microelectrode Array Layouts | ||||
Microelectrode Array Model | 60MEA 200/30iR-Ti | 60-3DMEA 100/12/40iR-Ti | 60-3DMEA 200/12/50iR-Ti | 60MEA 500/30iR-Ti |
Planar or 3-Dimensional (3D) | Planar | 3D | 3D | Planar |
Electrode Grid | 8 x 8 | 8 x 8 | 8 x 8 | 6 x 10 |
Electrode Spacing | 200 µm | 100 µm | 200 µm | 500 µm |
Electrode Diameter | 30 µm | 12 µm | 12 µm | 30 µm |
Electrode Height (3D) | N/A | 40 µm | 50 µm | N/A |
Experiments | Transverse slice | Transverse slice | Sagittal + Horizontal | Sagittal + Horizontal |
Figure 1: Spinal cord slice orientations, mounting and cutting methods. (A) Transverse slices require a Styrofoam cutting block with a supporting groove cut into it. The spinal cord is rested against the block in the support groove, the dorsal side of the cord facing away from the block. The block and cord are glued onto a cutting stage with cyanoacrylate adhesive. (B) Sagittal slices are prepared by placing a thin line of cyanoacrylate adhesive on the cutting stage and then positioning the spinal cord on its side on the glue. (C) Horizontal slices are prepared by placing a thin line of cyanoacrylate adhesive on the cutting stage and then positioning the spinal cord ventral side down on the glue.
Figure 2: Tissue positioning on the microelectrode array. (A) Image shows an open MEA headstage with an MEA placed in position. (B) Same as A with MEA headstage closed for recordings and tissue perfusion system in place. (C) Image shows an MEA as supplied by the manufacturer. Contact pads, which interface with the gold springs of the headstage, and the MEA tissue bath that holds the tissue bathing solution and tissue slice are shown. The area highlighted by the red square in the center is the location of the electrode array. (D) Schematics show the two MEA electrode configurations used in this study, with further details presented in Table 2. The reference electrode is denoted by the blue trapezoid. The left MEA electrode layout shows a 60-electrode square configuration, used most in the presented work-models 60MEA200/30iR-Ti with 30 μm diameter electrodes spaced 200 μm apart, or 200 μm spaced and 100 μm spaced 3-dimensional MEAs (60MEA200/12/50iR-Ti and 60MEA100/12/40iR-Ti) with electrodes 12 μm in diameter and either 50 μm or 40 μm high, respectively. The left MEA electrode layout shows a 6 x 10 electrode rectangular layout-60MEA500/30iR-Ti. (E) High-magnification image of a 60MEA100/12/40iR-Ti square MEA with transverse spinal cord slice positioned for recording. The slice sits on electrode rows 3-8. The top row of electrodes, which do not contact any tissue, serve as reference electrodes. The SDH area appears as a semitransparent band. In this case, the SDH overlies electrodes in rows 4, 5, and 6 and columns 2, 3, 4, 5, and 7 of the MEA. Scale bar = 200 µm. Abbreviations: MEA = microelectrode array; SDH = superficial dorsal horn.
Figure 3: Data recording and analysis tool layouts and example microelectrode array recordings showing extracellular action potential and local field potential waveforms. (A) Schematic shows preconfigured recording templateused for the acquisition of MEA data. Linking the MEA2100 and the recording (headstage/amplifier) tool enables the data to be named and saved. Four example traces of raw data (right, 5-min epochs) were collected by one MEA channel showing activity at baseline, 12 min after 4-AP application, a further 15 min after established 4-AP activity, and following bath application of TTX (1 µM). Note, the addition of 4-AP (second trace) produces a clear increase in background noise and EAP/LFP activity. Importantly, the activity remains relatively stable for at least 15 min after 4-AP-induced activity is established (third trace). Addition of TTX (1 µM) abolishes all activity (bottom trace). (B) Schematic (left) shows analyzer software configuration for data analysis. The raw data explorer tool is used to import recordings collected by recording software. These data are then run through a cross-channel filter tool that subtracts the selected reference electrode(s) signal(s) from other electrodes to remove background noise. Data pass through the EAP filter and the LFP filter tools to optimize signal-to-noise relationships for each waveform. Following this step, the EAP path data enter the EAP detector tool, where thresholds are set. EAPs are detected and then sent to the EAP analyzer tool where the latencies of each event are recorded and exported as a txt. file. An identical workflow occurs for LFP data using a corresponding LFP toolkit. Right traces show data from a single MEA channel containing various extracellular waveforms. Location of EAP and LFP signals are highlighted in the above 'count rasters.' Lower traces are epochs from upper recording (denoted by red bars) showing waveforms on an expanded timescale, including various LFP signals (note the variety of appearances) and individual extracellular EAPs (red circles). Note, LFP/EAP waveform and polarity vary relative to the number of neurons producing these signals, their proximity to the recording electrode, and their location in relation to the nearby electrode(s). Abbreviations: MEA = microelectrode array; EAP = extracellular action potential; LFP = local field potential; 4-AP = 4-aminopyridine; TTX = tetrodotoxin.
The authors have nothing to disclose.
4-aminopyridine | Sigma-Aldrich | 275875-5G | |
100% ethanol | Thermo Fisher | AJA214-2.5LPL | |
CaCl2 1M | Banksia Scientific | 0430/1L | |
Carbonox (Carbogen – 95% O2, 5% CO2) | Coregas | 219122 | |
Curved long handle spring scissors | Fine Science Tools | 15015-11 | |
Custom made air interface incubation chamber | |||
Foetal bovine serum | Thermo Fisher | 10091130 | |
Forceps Dumont #5 | Fine Science Tools | 11251-30 | |
Glucose | Thermo Fisher | AJA783-500G | |
Horse serum | Thermo Fisher | 16050130 | |
Inverted microscope | Zeiss | Axiovert10 | |
KCl | Thermo Fisher | AJA383-500G | |
Ketamine | Ceva | KETALAB04 | |
Large surgical scissors | Fine Science Tools | 14007-14 | |
Loctite 454 Instant Adhesive | Bolts and Industrial Supplies | L4543G | |
MATLAB | MathWorks | R2018b | |
MEAs, 3-Dimensional | Multichannel Systems | 60-3DMEA100/12/40iR-Ti, 60-3DMEA200/12/50iR-Ti | 60 titanium nitride (TiN) electrodes with 1 internal reference electrode, organised in an 8×8 square grid. Electrodes are 12 µm in diameter, 40 µm (100/12/40) or 50 µm (200/12/50) high and equidistantly spaced 100 µm (100/12/40) or 200 µm (200/12/50) apart. |
MEA headstage | Multichannel Systems | MEA2100-HS60 | |
MEA interface board | Multichannel Systems | MCS-IFB 3.0 Multiboot | |
MEA net | Multichannel Systems | ALA HSG-MEA-5BD | |
MEA perfusion system | Multichannel Systems | PPS2 | |
MEAs, Planar | Multichannel Systems | 60MEA200/30iR-Ti, 60MEA500/30iR-Ti | 60 titanium nitride (TiN) electrodes with 1 internal reference electrode, organised in either a 8×8 square grid (200/30) or a 6×10 rectangular grid (500/30). Electrodes are 30 µm in diameter and equidistantly spaced 200 µm (200/30) or 500 µm (500/30) apart. |
MgCl2 | Thermo Fisher | AJA296-500G | |
Microscope camera | Motic | Moticam X Wi-Fi | |
Multi Channel Analyser software | Multichannel Systems | V 2.17.4 | |
Multi Channel Experimenter software | Multichannel Systems | V 2.17.4 | |
NaCl | Thermo Fisher | AJA465-500G | |
NaHCO3 | Thermo Fisher | AJA475-500G | |
NaH2PO4 | Thermo Fisher | ACR207805000 | |
Rongeurs | Fine Science Tools | 16021-14 | |
Small spring scissors | Fine Science Tools | 91500-09 | |
Small surgical scissors | Fine Science Tools | 14060-09 | |
Sucrose | Thermo Fisher | AJA530-500G | |
Superglue | cyanoacrylate adhesive | ||
Tetrodotoxin | Abcam | AB120055 | |
Vibration isolation table | Newport | VH3048W-OPT | |
Vibrating microtome | Leica | VT1200 S |