The Vermicelli and Capellini Handling Tests of forepaw dexterity take advantage of the natural inclination of rodents to manipulate food items using skillful forepaw and digit movements. Animals are videotaped while handling short strands of uncooked dry pasta. Slow motion video playback allows for the quantification of forepaw adjustments.
1. Preparing for the onset of testing
2. Test set up
3. Administering pasta handling trials
4. Quantitative video analysis of forepaw adjustments and eating time
5. Video analysis of atypical handling patterns
6. Representative Results
The results from the video analysis should include the number of adjustments of each paw per trial and the time to eat each pasta piece. Results from rats with sensorimotor cortical lesions or cerebral ischemia indicate that animals make fewer adjustments with the impaired (contra-to-lesion) limb, an effect that endures for at least a month after the injuries. Unilateral dopamine depletion results in both a decrease in adjustments with the contralateral limb and an increase in adjustments with the ipsilateral limb (Allred et al., 2008). Results from mice show that aged animals take longer to eat the pasta pieces, and make more adjustments that do not result in advancement of the pasta into the mouth, compared to young adult mice (Tennant et al., 2009). The analysis of these tests may also include observations of atypical handling behaviors. Striatal damage and middle cerebral artery occlusion additionally resulted in increased frequency of abnormal eating behaviors (Allred et al., 2008).
Figure 1. Pasta handling posture of (A) rats and (B) mice. Note that the rats sit back on their haunches while the mice hunch over the pasta, necessitating the placement of a mirror below the mouse in order to view paw movements. (C) Examples of pasta pieces prepared for testing.
Figure 2. An example forepaw adjustment of (A-C) a rat and (D-F) a mouse. The first panel shows the animal before the adjustment, the center panel shows the forepaw adjusting, with an asterisk indicating the adjusting paw(s), and the last panel shows the replacement on the pasta piece.
Figure 3. Guide and grasp limb positions of rats and mice when the pasta is (A,C) long and (B,D) short.
In this video, we demonstrate how The Vermicelli and Capellini Handling Tests are conducted in rats and mice, respectively. These tests are a simple, quantitative way to study paw and digit function in normal animals, after damage to motor systems of the brain, or during aging. Slow-motion video analysis of the paw and digit movements used to handle small pieces of uncooked pasta allow the researcher to quantify the adjustments made with each paw, as well as observe abnormal behaviors that may be seen following experimentally-induced CNS damage. Testing sessions can be done repeatedly on different days and most animals complete all trials of a session within a few minutes. Thus, the test is suitable for incorporation into a larger test battery or experimental design. The tests can also be used in studies of motor skill learning (Xu et al., 2009), but here we present a protocol to assay changes in an established skill over time.
Currently, skilled reaching tests are the most commonly used tests of dexterous forelimb function in rats (e.g., Whishaw et al., 1986; Ballermann et al., 2001; Montoya et al., 1991) and mice (Farr & Whishaw, 2002; Tennant & Jones, 2009; Baird et al., 2001). Reaching tests permit isolated testing of each limb, whereas pasta handling is a bimanual task. Nevertheless, the tests are similar in their sensitivity to impairments in skilled forepaw function and the acquisition of skill for both tests involves plasticity in the forelimb representation of the motor cortex (Xu et al., 2009). In our experience, the reaching tests are more complicated and laborious to perform and, for some experimental questions, the present tests may provide a more efficient alternative. However, unlike the tests described here, skilled reaching tests have been in use for decades (Peterson, 1934) and they now include a versatile set of highly sensitive measures and test parameters (Ballermann et al., 2001; Farr & Whishaw, 2002; Montoya et al., 1991; Whishaw et al., 1992). In contrast, the Vermicelli and Capellini Handling Tests extend from relatively recent characterizations of the adroit food handling behavior of rats (Whishaw and Coles, 1996). In both administration and analysis, these tests could undoubtedly be further refined and extended, e.g., to more precisely quantify fine digit and bimanual movement patterns and to quantify the coordinated movements of the tongue, mouth and jaw.
The authors have nothing to disclose.
The authors would like to thank Dr. DeAnna Adkins, Dr. Marty Woodlee, Cole Husbands, Mónica A. Maldonado, Jackie Kane, and Dr. Tim Schallert for assistance in developing the Vermicelli Handling Test, and Lu Chou for assistance in developing the Capellini Handling Test. Supported by grants from the NIH-NINDS (NS05689) and NIH-NIA (1F31AG034032-01).