イオンモビリティー質量分析法は、その衝突断面積と質量に基づいて、イオンを分離する新興気相技術です。方法は、タンパク質複合体の全体的なトポロジーと形状の三次元情報を提供します。ここで、我々は、機器設定や最適化、ドリフト時間のキャリブレーション、およびデータ解釈のための基本的な手順を概説する。
イオンモビリティ(IM)は、弱電界の影響下で加圧セルを通過するイオンにかかる時間を測定する方法です。イオンがドリフト領域を横断これにより、速度はその大きさに依存します:大規模なイオンがバックグラウンド不活性ガス(通常はN 2)との衝突の大きい数を経験し、その結果、より小さいを構成するこれらのイオンよりもIMのデバイスを介して、よりゆっくりと旅する断面。一般的に、イオンが濃いガスの相も移行するのにかかる時間は、その衝突断面積(Ω)によると、それらを分離する。
最近、IM分析法は質量分析法と結合され、進行波(T波)SYNAPTイオンモビリティー質量分析計(IM – MS)がリリースされました。イオン移動度と質量分析を統合することで三次元スペクトルを(電荷の質量、強度、およびドリフトの時間)を得た、サンプルの分離と定義の余分な次元が可能になります。この分離技術は、スペクトルの重複が減少することができます、と非常に似て質量、または質量対電荷比が、異なるドリフト時間を持つ異種複合体の分解能を可能にします。また、ドリフト時間の測定値は、Ωがイオンの全体的な形状とトポロジーに関連しているとして、構造情報の重要なレイヤを提供しています。測定されたドリフトの時間値とΩの間に相関関係が定義されているクロスセクション1の較正タンパク質から生成された検量線を用いて計算されます。
IM – MSのアプローチのパワーは、サブユニットのパッキングとマイクロモル濃度でタンパク質のアセンブリの全体的な形状を定義する能力にあります、そして近い生理的な条件は1。成功したタンパク質四次構造を気相で維持、および未知の幾何学のタンパク質集合体の研究ではこのアプローチの可能性をハイライト表示されていることを明らかに個々の蛋白質2,3および非共有結合タンパク質複合体4-9、両方の最近のいくつかのIMの研究。 10;ここで、我々は、SYNAPT(四重極イオンモビリティ-飛行時間型)HDMSの楽器(現在入手可能な唯一の商用IM – MSの楽器ウォーターズ株式会社)を用いて、タンパク質複合体のIMS – MS分析の詳細な説明を提供しています。我々は、基本的な最適化の手順、衝突断面のキャリブレーション、およびデータの処理および解釈するための方法を説明します。プロトコルの最後のステップは、理論上のΩ値を算出する方法を説明します。全体的に、プロトコルは、タンパク質のアセンブリのIM – MSの特性評価のあらゆる側面をカバーしようとするのではなく、その目標は、フィールドでの新たな研究者に法の実用的側面を導入することである。
ここで説明するプロトコルは、その全体の形状、ユニットのパッキンとトポロジーに関する情報を提供する目的で、未知の三次元構造を持つタンパク質やタンパク質複合体の衝突断面積を定義することができます。この目的のために衝突断面積の値は一度それが構造的な細部にこれらの値を数値に変換する必要が描かれている。このプロセスは、追加の実験的な取り組みだけでなく、以下に簡単に説明されている計算分析を、必要になります。
で始まるには、公知の構造を持つタンパク質やタンパク質複合体を分析することをお勧めします。これらの測定は、方法論の有用な品質管理を提供することができますし、理論と実測Ωの値を比較することにより、取得パラメータの精度評価を可能にします。理論的な断面積は、結晶構造から計算することができますMOBCAL 15,16ソフトウェアを使用して座標を、オペレータのニーズに応じてコードの編集を可能にするオープンソースFORTRANベースのソフトウェアである。このような計算を実行するためには、入力構造ごとに実行反復計算の数が増えると原子の多数を含む座標ファイルは、1を受け入れていることをされるようにプログラムを変更するために必要です。
多成分のアセンブリ内でサブユニットの位相的な取り決めを定義するためのIM – MSの戦略は、最近4,6に提案されている。メソッドは小さいコンポーネントにタンパク質のアセンブリの解離経路の監視を行います。この解離は、アセンブリの"ビルディングブロック"の反射subcomplexesの分布を生じさせる溶液相の条件の制御による調整、によって達成されます。無傷の複雑かつ分解製品の両方のΩ値の同時測定は、タンパク質複合体の位相モデルを計算するために使用されている構造的な制約を生成します。この方法論の根底にある基本的な前提は、生成されたsubcomplexesが母国のような確認を保持することであり、そして実際に最近の研究では、分解製品の溶液構造が維持されることが実証されていると、溶液または気相のどちらかに大きな転位4,6を発生していません。
気相タンパク質の錯イオンに四次構造の割り当ての最後のステップは、コンピュータが生成モデルに衝突断面積の値は継手です。モデリングのアプローチが異なる可能トポロジーサブユニットの手配、彼らのシリコ Ωの値での計算と実験値と比較さを探求するために採用されています。現在はわずか数計算のアプローチはサブユニット1,8の直径に近似するspheretype粗粒度方式と同様に、使用されています。全体的に、このフィールドは、初期の頃のままであり、さらなる発展は、このアプローチは一般的な、そして複合体の広い範囲に適用可能にするために必要です。
The authors have nothing to disclose.
著者は彼らの批判的検討のため、および原稿への彼らの貢献のためにシャロンのグループメンバーに感謝。我々は、イスラエル科学財団(助成番号1823から1807と378/08)、生体膜研究のためのヨーゼフコーンミネルバセンター、新しい科学者のためのChaisファミリーフェロープログラム、アブラハムMorashaとBikuraプログラムの支援に感謝していますとソニアRochlin財団、ウォルフソンのファミリー公益信託、ヘレンと生体分子の構造や組立のためのミルトンA. Kimmelmanセンター、シュロモとサビーヌBeirzwinskyの不動産、MEILデボタンエインズレイ、そしてカレンシェムリアップ、英国。