14.24:

Amides to Amines: LiAlH4 Reduction

JoVE 核
Organic Chemistry
需要订阅 JoVE 才能查看此.  登录或开始免费试用。
JoVE 核 Organic Chemistry
Amides to Amines: LiAlH4 Reduction

3,771 Views

01:20 min

April 30, 2023

Amide reduction with strong reducing agents like lithium aluminum hydride proceeds through a nucleophilic acyl substitution to form amines. Primary, secondary, and tertiary amides yield primary, secondary, and tertiary amines, respectively.

Amide reduction requires two equivalents of the reducing agent, acting as a source of hydride ions. As shown in the figure, the reaction is initiated with a nucleophilic attack by the hydride ion at the carbonyl carbon to form a tetrahedral intermediate. Subsequently, the carbonyl oxygen atom reacts with aluminum hydride to form an oxygen–aluminum bond. This is followed by the rearrangement of electron pairs with the expulsion of the aluminate anion as a leaving group to give an iminium ion intermediate. A second nucleophilic attack on the iminium ion by the hydride yields amine as a final product.

Figure1

Cyclic amides often called lactams, are also reduced with lithium aluminum hydride to give cyclic amines.