Here, we present a protocol for gene editing in primary human T cells using CRISPR Cas Technology to modify CAR-T cells.
Adoptive cell therapies using chimeric antigen receptor T cells (CAR-T cells) have demonstrated remarkable clinical efficacy in patients with hematological malignancies and are currently being investigated for various solid tumors. CAR-T cells are generated by removing T cells from a patient’s blood and engineering them to express a synthetic immune receptor that redirects the T-cells to recognize and eliminate target tumor cells. Gene editing of CAR-T cells has the potential to improve safety of current CAR-T cell therapies and further increase the efficacy of CAR-T cells. Here, we describe methods for the activation, expansion, and characterization of human CRISPR-engineered CD19 directed CAR-T cells. This comprises transduction of the CAR lentiviral vector and use of single guide RNA (sgRNA) and Cas9 endonuclease to target genes of interest in T cells. The methods described in this protocol can be universally applied to other CAR constructs and target genes beyond the ones used for this study. Furthermore, this protocol discusses strategies for gRNA design, lead gRNA selection and target gene knockout validation to reproducibly achieve high-efficiency, multiplex CRISPR-Cas9 engineering of clinical grade human T cells.
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the field of adoptive cell therapies and cancer immunotherapy. CAR-T-cells are engineered T-cells expressing a synthetic immune receptor that combines an antigen-specific single chain antibody fragment with signaling domains derived from the TCRzeta chain and costimulatory domains necessary and sufficient for T-cell activation and co-stimulation1,2,3,4. The manufacturing of CAR-T cells starts by extracting the patient's own T-cells, followed by ex vivo viral transduction of the CAR module and expansion of the CAR-T cell product with magnetic beads that function as artificial antigen presenting cells5. Expanded CAR-T cells are re-infused into the patient where they can engraft, eliminate target tumor cells and even persist for multiple years post infusion6,7,8. Although CAR-T cell therapy has resulted in remarkable response rates in B-cell malignancies, clinical success for solid tumors has been challenged by multiple factors including poor T-cell infiltration9, an immunosuppressive tumor microenvironment10, antigen coverage and specificity, and CAR-T cell dysfunction11,12. Another limitation of current CAR-T cell therapy includes the use of autologous T-cells. After multiple rounds of chemotherapy and high tumor burden, CAR-T cells can be of poor quality as compared to allogeneic CAR-T products from healthy donors in addition to the time and expense associated with manufacturing of autologous CAR-T cells. Gene-editing of the CAR-T cell product by CRISPR/Cas9 represents a new strategy to overcome current limitations of CAR-T cells13,14,15,16,17.
CRISPR/Cas9 is a two component system that can be used for targeted genome editing in mammalian cells18,19. The CRISPR-associated endonuclease Cas9 can induce site-specific double-strand breaks guided by small RNAs through base-pairing with the target DNA sequence20. In the absence of a repair template, double-strand breaks are repaired by the error prone nonhomologous end joining (NHEJ) pathway, resulting in frameshift mutations or premature stop codons through insertion and deletion mutations (INDELs)19,20,21. Efficiency, ease of use, cost-effectiveness and the ability for multiplex genome editing make CRISPR/Cas9 a powerful tool to enhance the efficacy and safety of autologous and allogeneic CAR-T cells. This approach can also be used to edit TCR directed T cells by replacing the CAR construct with a TCR. Additionally, allogeneic CAR-T cells that have limited potential to cause graft versus host disease can also be generated by gene editing the TCR, b2m, and HLA locus.
In this protocol, we show how CRISPR-engineering of T cells can be combined with viral vector mediated delivery of the CAR-Transgene to generate genome-edited CAR-T cell products with enhanced efficacy and safety. A schematic diagram of the entire process is shown in Figure 1. Using this approach, we have demonstrated high-efficiency gene knockout in primary human CAR-T cells. Figure 2A describes in detail the timeline of each step for editing and manufacturing T cells. Strategies for guide RNA design and knockout validation are also discussed to apply this approach to various target genes.
Human T cells were procured through the University of Pennsylvania Human Immunology Core, which operates under principles of Good Laboratory Practice with established standard operating procedures and/or protocols for sample receipt, processing, freezing, and analysis conform to MIATA and University of Pennsylvania ethics guidelines.
1. Lentiviral vector production
NOTE: The viral products have been made replication-defective by separation of packaging constructs (Rev, gag/pol/RRE, VSVg and transfer plasmid) into four separate plasmids, greatly reducing the likelihood of recombination events that may result in replication-competent virus.
2. Designing of sgRNAs and gene disruption in primary human T cells
3. T cell activation, lentiviral transduction and expansion
NOTE: For screening sgRNA's, lentiviral transduction (Step 3.2) of the CAR construct is not necessary.
4. CRISPR Efficiency
5. Monitoring Off-target effects using iGUIDE – Library preparation, DNA sequencing, and analysis
NOTE: iGUIDE technique allows for detection of locations of Cas9 guided cleavage and quantify the distributions of those DNA double-stranded breaks.
We describe here a protocol to genetically engineer T cells, that can be used to generate both autologous and allogeneic CAR-T cells, as well as TCR redirected T cells.
Figure 1 provides a detailed description of the stages involved in the process of manufacturing CRISPR edited T cells. The process begins by designing sgRNA to the gene of interest. Once the sgRNA are designed and synthesized they are then used to make RNP complexes with the appropriate Cas protein. T cells are isolated from either a healthy donor or a patient apheresis and RNP complexes are delivered either by electroporation or nucleofection. Post editing, the T cells are activated and transduced with the lentiviral vector coding for the CAR or the TCR construct. After activation, T cells are expanded in culture and cryopreserved for future studies. The detailed protocol followed in the laboratory is described in Figure 2. During the expansion, the population doubling and volume changes are tracked throughout the protocol and an example is shown in Figure 2B and C for both mock and edited CAR-T cells. Figure 2B,C show that the KO of the gene of interest did not cause any significant changes in the proliferation and activation during the expansion. These results, however, depend on the target gene being edited and hence may or may not lead to changes in proliferation and expansion.
Once the cells are cryopreserved, levels of CAR expression are also determined for further functional studies. In this case, as shown in Figure 2D we checked CD19 CAR expression on both the Mock edited and KO CAR-T cells and did not see any significant changes. This will again depend on the gene of interest being edited. Finally, the KO efficiency can be determined using multiple techniques such as flow cytometry and western blot for protein level detection and also Sanger sequencing for gene level detection of the KO. Figure 3A and 3B show representative flow cytometry plots where PDCD1 and TRAC locus is targeted using sgRNA, showing an efficiency of 90% for the PDCD1 sgRNA and 98% for the TRAC sgRNA across multiple healthy donors. Thus, this protocol can achieve high efficiency knockout with minimal loss in viability.
Figure 1. Schematic diagram showing T cell editing using CRISPR Cas9 Technology and manufacturing of primary human CAR-T cells. Please click here to view a larger version of this figure.
Figure 2. Expansion of edited CAR-T cells and their population doublings. (A) Timeline of CRISPR editing and manufacturing in primary human CART cells. (B) Population Doublings in Mock and CRISPR edited CD19 CAR-T cells measured using a Coulter Counter during the expansion of the CAR-T cells (n=3 healthy donors; KO=knockout) (C) Cell size (µm3) measured using a Coulter Counter during the expansion of the CAR-T cells (n=3 healthy donors). (D) Representative flow cytometry plots showing CAR staining and average in multiple donors showing CAR expression in both mock and edited CAR-T cells. CAR expression was detected using an anti-idiotype antibody conjugated to a fluorophore and gated on Lymphocytes/Singlets/Live Cells (n=3 healthy donors, UTD=untransduced,). Please click here to view a larger version of this figure.
Figure 3. Characterizing KO efficiency in edited CAR-T Cells using flow cytometry. (A) Representative flow cytometry plots showing PD-1 staining and average in multiple donors showing PD-1 KO efficiency using a gRNA targeting the TRAC locus in mock and edited CAR-T cells. PD-1 expression was detected using PD-1 antibody (Clone EH12.2H7) conjugated to fluorophore and gated on Lymphocytes/Singlets/Live Cells (n=3 healthy donors). Error bars indicate mean±standard error of the mean (SEM). **** p<0.0001, *** p=0.0005, ** p=0.001 by Welch's t test. (B) Representative flow cytometry plots showing CD3 staining and average in multiple donors showing CD3 KO efficiency using a gRNA targeting the TRAC locus in mock and edited CAR-T cells. CD3 expression was detected using CD3 antibody (Clone OKT3) conjugated to fluorophore and gated on Lymphocytes/Singlets/Live Cells (n=3 healthy donors). Error bars indicate mean±standard error of the mean (SEM). **** p<0.0001, *** p=0.0005, ** p=0.001 by Welch's t test. Please click here to view a larger version of this figure.
Here we describe approaches to gene edit CAR-T cells using CRISPR Cas9 technology and manufacture products to further test for function and efficacy. The above protocol has been optimized for performing CRIPSR gene editing in primary human T cells combined with engineering T cells with chimeric antigen receptors. This protocol allows high knockout efficiency with minimal donor-to-donor variability. Modification using CRISPR can improve both the efficacy and safety of CAR-T cells by eliminating receptors that inhibit T cells function and manufacturing allogeneic CAR-T cells.
For small scale expansion protocols, starting with 106 cells per group leads to around 5006 CAR-T cells with an average of 6 population doublings in a healthy normal donor. However, this can vary depending upon if the gene of interest affects T cell activation, transduction and proliferation. Five hundred million cells are sufficient for confirming KO efficiency, in vitro assays and in vivo assays. There are different variations to the protocol wherein CRISPR editing could be performed before or after activation and CAR-Transduction. Ren et al described one such variation where cells are edited after bead stimulation and CAR-Transduction15. The advantage of CRISPR editing before bead stimulation is lower cell quantities need to be edited since the T cells have not proliferated yet, making the procedure less time consuming and more cost-efficient. Additionally, performing editing upfront is directly translatable to the clinic. In fact, many steps in this protocol have been informed by what can be adopted in the clinic which increases the consistency of the KO efficiency when moving from bench to bedside.
There are multiple variables that can be chosen at each step of the protocol. For example, T cells can be electroporated or nucleofected. While both achieve comparable KO efficiencies, in our experience using the nucleofector has higher viability post editing and hence is preferred. However, using the electroporator may prove to be more cost-effective in the long run. Both of these equipments are used for small scale T cell expansions. For large scale and clinical scale expansions, protocols must be re-optimized to perform editing and requires different equipment for nucleofection. There are multiple technological platforms that can be used for both small scale and large-scale editing and expansion depending on the needs of the user.
The authors have nothing to disclose.
We acknowledge the Human Immunology Core for providing normal donor T cells and the Flow Cytometry Core at University of Pennsylvania.
4D-Nucleofactor Core Unit | Lonza | AAF-1002B | |
4D-Nucleofactor X-Unit | Lonza | AAF-1002X | |
Accuprime Pfx Supermix | ThermoFisher | 12344040 | |
Beckman Optima XPN ultracentrifuge | Beckman Coulter | ||
Brilliant Violet 605 anti-human CD3 Antibody | Biolegend | 317322 | Clone OKT3 |
BV711 Anti-human PD1 | Biolegend | Clone EH12.2H7 | |
Cas9-Electroporation enhancers | IDT | 1075915 | |
CD3/CD28 Dynabeads | ThermoFisher | 40203D | |
CD4+ T cell isolation Kit | StemCell technologies | 15062 | |
CD8+ T cell isolation Kit | StemCell technologies | 15063 | |
Corning 0.45 micron vacuum filter/bottle | Corning | 430768 | |
Corning T150 cell culture flask | Millipore Sigma | CLS430825 | |
DMSO | Millipore Sigma | D2650 | |
DNAeasy Blood and Tissue Kit | Qiagen | 69504 | |
DynaMag Magnet | ThermoFisher | 12321D | |
Glutamax supplement | ThermoFisher | 35050061 | |
HEK293T cells | ATCC | CRL-3216 | |
HEPES (1 M) | ThermoFisher | 15630080 | |
huIL-15 | PeproTech | 200-15 | |
huIL-7 | PeproTech | 200-07 | |
Lipofectamine 2000 | ThermoFisher | 11668019 | |
Nucleospin Gel and PCR cleanup | Takara | 740609.25 | |
Opti-MEM | ThermoFisher | 31985062 | |
P3 Primary cell 4D-nucleofactor X Kit L | Lonza | V4XP-3024 | |
Penicilin-Streptomycin-Glutamine | ThermoFisher | 10378016 | |
pTRPE expression Plasmid | in house | ||
Rabbit Anti-Mouse FMC63 scFv Monoclonal Antibody, (R19M), PE | CytoArt | 200105 | |
RPMI1640 | ThermoFisher | 12633012 | |
sgRNA | IDT | ||
Spy Fi Cas9 | Aldevron | 9214 | |
Ultracentrifuge tubes | Beckman Coulter | 326823 | |
Viral packaging mix | in house | ||
X-Vivo-15 Media | Lonza | BE02-060F |