This protocol describes a method for etching text, patterns, and images onto the surface of silica aerogel monoliths in native and dyed form and assembling the aerogels into mosaic designs.
A procedure for aesthetically enhancing silica aerogel monoliths by laser etching and incorporation of dyes is described in this manuscript. Using a rapid supercritical extraction method, large silica aerogel monolith (10 cm x 11 cm x 1.5 cm) can be fabricated in about 10 h. Dyes incorporated into the precursor mixture result in yellow-, pink- and orange-tinged aerogels. Text, patterns, and images can be etched onto the surface (or surfaces) of the aerogel monolith without damaging the bulk structure. The laser engraver can be used to cut shapes from the aerogel and form colorful mosaics.
Silica aerogel is a nanoporous, high surface area, acoustically insulating material with low thermal conductivity that can be used in a range of applications from collecting space dust to building insulation material1,2. When manufactured in monolithic form, silica aerogels are translucent and can be used to make highly insulating windows3,4,5.
Recently, we have demonstrated that it is possible to alter the appearance of a silica aerogel by etching onto or cutting through the surface using a laser engraving system6,7 without causing bulk structural damage to the aerogel. This could be useful for making aesthetic enhancements, printing inventory information and machining aerogel monoliths into various forms. Femtosecond lasers have been shown to work for crude "micro-machining" of aerogels8,9,10,11; however, the current protocol demonstrates the ability to alter the surface of aerogels with a simple laser engraving system. As a result, this protocol is broadly applicable to the artistic and technical communities.
It is also possible to incorporate dyes into the aerogel chemical precursor mixture and thereby make dye-doped aerogels with a range of hues. This method has been used to fabricate chemical sensors12,13, to enhance Cerenkov detection14, and for purely aesthetic reasons. Here, we demonstrate the use of dyes and laser etching to prepare aesthetically pleasing aerogels.
In the section that follows, we describe procedures for making large silica aerogel monoliths, altering the monolith preparation procedure to incorporate dyes, etching text, patterns and images onto the surface of an aerogel monolith, and cutting shapes from large dyed monoliths to be assembled into mosaics.
Safety glasses or goggles should be worn when preparing the aerogel precursor solutions, working with the hot press, and using the laser engraving system. Laboratory gloves should be worn when cleaning and preparing the mold, preparing the chemical reagent solution, pouring the solution into the mold in the hot press and handling the aerogel. Read Safety Data Sheets (SDS) for all chemicals, including solvents, prior to working with them.Tetramethyl orthosilicate (TMOS), methanol and concentrated ammonia, and solutions containing these reagents, must be handled within a fume hood. Dyes can be toxic and/or carcinogenic, so it is important to employ appropriate personal protective equipment (see the SDS). As noted in our previous protocol15, a safety shield should be installed around the hot press; the hot press should be properly vented and ignition sources should be removed. Before using the laser engraver, ensure that the vacuum exhaust system is operational.
1. Obtain or fabricate an aerogel monolith
NOTE: Methods for making a 10 cm x 11 cm x 1.5 cm aerogel monolith in a contained metal mold via a rapid supercritical extraction method (RSCE)15,16,17,18 are described here. This RSCE process removes the solvent mixture from the pores of the silica matrix without causing structural collapse. Because the precursor mixture fills the mold, this method involves supercritical extraction of a significantly smaller volume of alcohol (in this case, methanol) than other high-temperature alcohol supercritical extraction methods. Aerogels produced using this method have densities of approximately 0.09 g/mL and surface areas of about 500 m2/g. For etching, the monolith can be of any size large enough to etch on and prepared via any appropriate method (i.e., CO2 supercritical extraction, freeze drying, ambient drying). For dyed aerogels, these other methods may not be as suitable because the dye can leach out during solvent exchange steps. If using a monolith obtained from another source, skip to step 2.
2. Prepare laser engraver print file
NOTE: It is possible to print text, patterns, and images on the aerogel. Any suitable drawing program can be used. Images are interpreted in grayscale. The laser engraver will ablate the aerogel surface in locations where there is text or a pattern and varies the laser pulse density to achieve gray scale values. Etching occurs in locations where the printed image is non-white. Etching does not occur where the image is white. Separate instructions are included for text, pattern, or image files. All three can be combined in one file if desired6.
3. Etching procedure
NOTE: The following instructions are for a 50 W CO2 laser engraver/cutter but can be modified to use with other systems. This system adjusts speed and power properties on a percent basis from 0% to 100%. Relevant laser engraver properties are included in Table 3. A vacuum exhaust system should be used to vent the laser engraver. Use gloves when handling the aerogel monolith.
4. Cutting procedure
5. Making aerogel mosaics
This protocol can be employed to prepare a wide variety of aesthetically pleasing aerogel monoliths for applications including, but not limited to, art and sustainable building design. Inclusion in the precursor mixture of the small amounts of dye employed here is only observed to impact the color of the resulting aerogel monolith; changes in other optical or structural properties are not observed.
Figure 8 shows an approach to preparing an aerogel mosaic from large silica monoliths. The same pattern (shown in Figure 3) is cut into three different dyed aerogel monoliths (Figure 8a-c). Aerogel pieces are then reassembled into a mosaic pattern (Figure 8d-e). To prepare a mosaic window, the aerogel mosaic can be sandwiched between two panes of glass or transparent plastic within a frame assembly. Use of a compression frame will eliminate gaps between the re-assembled pieces in the final mosaic assembly.
It is possible to etch designs on smaller monolithic pieces, following the same procedure outlined in section 3, in order to obtain visually interesting arrangements. Figure 9 presents images of dyed, etched aerogel pieces under natural lighting conditions (Figure 9a) and under UV light (Figure 9b), highlighting the fluorescent nature of the dyes used here. Note that small monoliths of irregular size and shape were used to illustrate the feasibility of etching onto smaller pieces; the etching process did not cause them to break.
Figure 10 presents a montage of etched aerogels that illustrate different aesthetic effects that can be achieved using this protocol: native aerogels etched with patterns of various density (Figure 10a-c), aerogels with photographs printed onto the front surface of a planar surface (Figure 10d) and front and back of a curved surface (Figure 10e) as well as an etched fluorescein-dyed aerogel (Figure 10f). The montage illustrates the versatility of the etching and dying processes.
Etching results in changes to the surface of the aerogel, but visual observation, imaging and BET analysis demonstrates that it leaves the bulk structure intact6,7. Photographs in Figure 5, Figure 6, Figure 7, Figure 8, Figure 9 illustrate that the unetched portions of the monolith are unscathed. The localized damage caused by etching can be imaged. Figure 11 shows scanning electron microscope (SEM) images of etched silica aerogel. Figure 11a shows the interface between etched "lines" (upper right portion of image, with features in a venation pattern) and the un-etched nanoporous aerogel (which appears almost smooth at this magnification). Etching causes ablation of material from the surface and melting of some of the silica into filament-like structures hundreds of µm in length7. Figure 11b shows the effect of a single laser pulse in the aerogel.
Dye & Structure | Melting Point (°C) | Mass ratio (Dye/Methanol) in stock solution | Images of Resulting Aerogels |
Fluorescein |
315 | 0.05% g /g | |
Rhodamine B |
165 | 0.075% g/g | |
Rhodamine 6G |
290 | 0.16% g/g |
Table 1: Information on the dyes. Information on dyes used for making yellow-, pink-, and orange-tinged aerogels and representative images. Different shades are achieved by diluting the methanol/dye stock mixture with additional methanol (as described in step 1.2.2.4.) prior to use in the precursor mixture. Images are shown for materials prepared with 0x dilution (stock solution, shown to the left), 2x dilution (50% methanol/dye + 50% methanol, shown in the center), and 6.67x dilution (15% methanol/dye + 85% methanol, shown to the right).
Step | Temperature (°F, °C) | T-Rate (°F/min, °C/min) | Force (Kip, kN) | F-Rate(Kip/min, kN/min) | Dwell (min) | Step Duration (min) |
1 | 90, 32 | 200, 111 | 55, 245 | 600, 2700 | 30 | 30 |
2 | 550, 288 | 2, 1.1 | 55, 245 | — | 55 | 285 |
3 | 550, 288 | — | 1, 4.5 | 1, 4.5 | 15 | 70 |
4 | 90, 32 | 2, 1.1 | 1, 4.5 | — | 0 | 230 |
Table 2: Hot press parameters.
Parameter | Values |
Maximum Speed | 8.9 cm/s (vector mode) |
208 cm/s (raster mode) | |
Maximum Power | 50 W |
Frequency Range | 1 – 5000 Hz |
Print Resolution | 75 – 1200 DPI |
Table 3: Laser engraver properties.
Speed (cm/s) | Cut Depth (mm) |
0.27 | 12.8 |
0.45 | 12.2 |
0.71 | 10.4 |
0.89 | 10.2 |
1.78 | 7 |
2.67 | 6.2 |
3.56 | 5.2 |
4.45 | 4.6 |
5.34 | 4.3 |
6.23 | 3.7 |
7.12 | 3.4 |
8.01 | 2.8 |
8.9 | 3 |
Table 4: Laser cut depth as a function of laser head speed for a laser power of 100% (50 W) and frequency of 500 Hz cutting through a 12.7 mm thick aerogel sample.
Figure 1: Mold Assembly. Schematics of the (a) top (with fourteen vent holes), (b) middle, and (c) bottom mold assembly. The blue surface (d) indicates the connecting surface of the bottom part (a similar one exists on the top surface) and the off-white surfaces (e) indicate the inside surfaces of the middle and bottom mold (a similar one exists on the top surface). A three-part mold is used to facilitate removal of the aerogel, if needed. Please click here to view a larger version of this figure.
Figure 2: Schematic showing mold placement in hot press. (a) Hot press platens, (b) graphite gasket, (c) stainless steel foil, (d) 3-part mold. NOTE: A piece of stainless steel foil can be placed between the platen and the graphite gasket to prevent sticking to the platen, as described in step 1.1.12. Please click here to view a larger version of this figure.
Figure 3: Example construction of a mosaic design. (a) square outline created, (b) diagonal lines added, (c) circle added, (d) inner diagonal lines removed, (e) hexagon added, and (f) final design. See Figure 8 for aerogel mosaic constructed from this design. Please click here to view a larger version of this figure.
Figure 4: Example adjustment of a cloud image. (a) Original image. (b) Inverted image with off-white background. (c) Original image with background removed and contrast adjusted to 40% to highlight features. (d) Photograph of aerogel etched with image shown in panel a. The low contrast level in the original image results in an indistinct etched pattern. (e) Photograph of aerogel etched with image shown in panel b. Here, the cloud is more visible but the off-white background results in less distinction. Note that the cracks observed were present on the monolith prior to etching and are not due to the etching process. (f) Photograph of aerogel etched with image shown in panel c. The adjusted contrast and removal of the background results in a more distinct cloud. In all the images, the cloud is approximately 2 cm high. Please click here to view a larger version of this figure.
Figure 5: Laser engraver. (a) manual focus gauge, (b) laser and lens assembly, (c) aerogel and (d) platform. Please click here to view a larger version of this figure.
Figure 6: Cut depth versus laser speed. Cut depth versus laser speed (100% leftmost cut, 3% rightmost cut) for a power of 100% (50 W) and a frequency of 500 Hz (see accompanying data in Table 4) for a 12.7 mm thick aerogel sample. This figure has been modified from Stanec et al.7 The arrow indicates the cut that penetrated the full depth of the aerogel. Please click here to view a larger version of this figure.
Figure 7: Photograph of cut aerogel edge. Pieces of ablated aerogel can be seen on the leftmost surface. Please click here to view a larger version of this figure.
Figure 8: Example of aerogel mosaic. The final pattern of Figure 3 cut into (a) rhodamine-6G-dyed aerogel (orange), (b) fluorescein-dyed (yellow) aerogel, and (c) rhodamine-B-dyed (pink) aerogel (d,e) individual cut pieces reassembled to form tri-color mosaics. Please click here to view a larger version of this figure.
Figure 9: Etched dyed aerogel samples. Etched dyed aerogel samples (a) under natural lighting conditions and (b) under UV light. Notes: the size of the largest aerogel piece (left side, middle) is approximately 3 cm x 3 cm x 1 cm. Dark spots observed are due to staining from the laser engraver platform or are loose particles, rather than an indication of inhomogeneity in dye distribution. Please click here to view a larger version of this figure.
Figure 10: Photographs of etched aerogels. (a) view of geometric pattern etched on front and back of aerogel, (b) a dense etching pattern leaves the bulk structure intact, (c) flower pattern etching, (d) photograph (top) etched onto silica aerogel (bottom), (This figure has been modified from Michaloudis et al.6) (e) photograph (top) of Kouros statue etched onto front and back of cylindrical aerogel of diameter 2.5 cm (note the original photo was inverted to create a white background before etching), and (f) image etched onto fluorescein-dyed silica aerogel of height 9 cm. Please click here to view a larger version of this figure.
Figure 11: SEM images of a silica aerogel showing the effect of (a) etching lines on the upper-right side of the image and (b) a single laser pulse. (This figure has been modified from Stanec et al.7) The images show structural changes caused by the laser. The scale bar is 20 µm. Please click here to view a larger version of this figure.
This protocol demonstrates how laser etching and the inclusion of dyes can be employed to prepare aesthetically pleasing aerogel materials.
Making large (10 cm x 11 cm x 1.5 cm) aerogel monoliths requires proper mold preparation through sanding, cleaning, and grease application to prevent the aerogel from sticking to the mold and major cracks from forming. The parts of the mold in direct contact with the precursor solution/soon to be formed aerogel are the most critical. Reducing the surface roughness of the mold via machine polishing will improve performance. It is important to apply grease only to the outer perimeter (13 mm) of the top part of the mold so that when the hot press force is applied to the mold, grease does not seep into the cavity of the mold. If grease gets into the cavity, major cracks will form in the aerogel.
When using the laser engraver, the aerogel needs to be properly placed in the top-left corner of the laser engraver and the dimensions of the aerogel need to correspond with those of the drawing program document. The image to be etched must be properly prepared by removing the non-white background, adjusting contrast to get definition and highlight features in the image. Although it is possible to print dense patterns (see Figure 8b), if the pattern is too dense, the ablated material can separate from the bulk of the aerogel. When cutting through an aerogel the laser parameters should be adjusted to avoid discoloration6,7. High frequency, high power, and low speed settings will cause more damage. These settings will also affect the quality of the cut and the amount of damage at the cut surface. The guidelines provided here for laser power level, frequency and speed are for a typical silica aerogel of density 0.09 g/mL. Adjustments to these parameters may be needed for aerogels of different densities.
It is important to select dyes that can survive the RSCE aerogel fabrication process. They need to be thermally stable at 290 °C (550 °F) and they must not react with methanol. However, even if a dye meets these requirements, it may not work. In addition to the dyes described above, we tested Bismarck Brown, Indigo, Brilliant Blue and Congo Red (in an effort to satisfy Victorian Gothic aesthetics in the mosaic designs). These dyes did not survive the RSCE process and resulted in opaque cloudy white aerogels. The concentration level of dye affected the opacity of the aerogel but not the expected color. If aerogels produced from a precursor solution that includes dye show no color (indicating decomposition of the dye), the maximum processing temperature can be lowered to 260 °C, which is still above the supercritical temperature of methanol. Or an alternative aerogel preparation method (CO2 supercritical extraction, ambient pressure drying, or freeze drying) can be used, although solvent exchange steps are likely to wash away a significant fraction of the dye. Another method for making colored aerogels is to incorporate metal salts into the precursor mixture. For example, cobalt, nickel, and copper salts can be used to produce blue21, green22 and red-brown aerogels23, respectively, via the RSCE method; however, the resulting aerogels are opaque.
We are not aware of any other methods for etching or writing onto an aerogel surface. There are other methods for cutting aerogels including the use of mechanical saws24. Diamond saws can cut aerogel, but it is difficult to avoid cracking and excessive saw kerf. In applications to remove space dust from aerogels Ishii et al.25,26 demonstrate the use of ultrasonic microblades to cut aerogel and minimize these issues.
The ability to dye and etch onto silica aerogels can be used to enhance the aesthetics of aerogel monoliths, which in native un-etched form often exhibit imperfections due to haze and light scattering. We are incorporating the resulting aesthetically enhanced aerogels into window prototypes and sculpture; however, it would be possible to use the methods described here in other applications, including printing inventory information and precise target patterns onto aerogel monoliths. The cutting and etching procedures also offer methods for machining silica aerogels into specific shapes.
The authors have nothing to disclose.
The authors would like to acknowledge the Union College Faculty Research Fund, Student Research Grant program, and the summer undergraduate research program for financial support of the project. The authors would also like to acknowledge Joana Santos for the design of the three-piece mold, Chris Avanessian for SEM imaging, Ronald Tocci for etching onto the curved aerogel surface, and Dr. Ioannis Michaloudis for inspiration and initial work on the etching project as well as for providing the Kouros image and cylindrical aerogel.
2000 grit sandpaper | Various | ||
50W Laser Engraver | Epilog Laser | Any laser cutter is suitable | |
Acetone | Fisher Scientific www.fishersci.com | A18-20 | Certified ACS Reagent Grade |
Ammonium Hydroxide (aqueous ammonia) | Fisher Scientific www.fishersci.com | A669S212 | Certified ACS Plus, about 14.8N, 28.0-20.0 w/w% |
Beakers | Purchased from Fisher Scientific | Any glass beaker is suitable. | |
Deionized Water | On tap in house | ||
Digital balance | OHaus Explorer Pro | Any digital balance is suitable. | |
Disposable cleaning wipes | Fisher Scientific www.fishersci.com | 06-666 | KimWipe |
Drawing Software | CorelDraw Graphics Suite | CorelDraw | |
Flexible Graphite Sheet | Phelps Industrial Products | 7500.062.3 | 1/16" thick |
Fluorescein | Sigma Aldrich www.sigmaaldrich.com | F2456 | Dye content ~95% |
Foam paint brush | Various | 1-2 cm size | |
High Vacuum Grease | Dow Corning | ||
Hydraulic Hot Press | Tetrahedron www.tetrahedronassociates.com | MTP-14 | Any hot press with temperature and force control will work. Needs maximum temperature of ~550 F and maximum force of 24 tons. |
Laser Engraver | Epilogue Laser | Helix – 24 | 50 W |
Methanol (MeOH) | Fisher Scientific www.fishersci.com | A412-20 | Certified ACS Reagent Grade, ≥99.8% |
Mold | Fabricated in House | Fabricate from cold-rolled steel or stainless steel. | |
Paraffin Film | Fisher Scientific www.fishersci.com | S37441 | Parafilm M Laboratory Film |
Rhodamine-6G Rhodamine-6g FlouresceinRhodamine-6g |
Sigma Aldrich www.sigmaaldrich.com | 20,132-4 | Dye content ~95% |
Rhodamine-B Rhodamine-6g FlouresceinRhodamine-6g |
Sigma Aldrich www.sigmaaldrich.com | R-953 | Dye content ~80% |
Soap to clean mold | Various | ||
Stainless Steel Foil | Various | .0005" thick, 304 Stainless Steel | |
Tetramethylorthosilicate (TMOS) | Sigma Aldrich www.sigmaaldrich.com | 218472-500G | 98% purity, CAS 681-84-5 |
Ultrasonic Cleaner | FisherScientific FS6 | 153356 | Any sonicator is suitable. |
Vacuum Exhaust system | Purex | 800i | Any exhaust system is suitable. |
Variable micropipettor, 100-1000 µL | Manufactured by Eppendorf, purchased from Fisher Scientific www.fishersci.com | S304665 | Any 100-1000 µL pipettor is suitable. |